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ABSTRACT 

A pipeline involving data acquisition, curation, carefully chosen graphs and mathematical 

models, allows analysis of COVID-19 outbreaks at 3,546 locations world-wide (all countries plus 

smaller administrative divisions with data available).   Comparison of locations with over 50 deaths 

shows all outbreaks have a common feature: H(t) defined as loge(X(t)/X(t-1)) decreases linearly on a 

log scale, where X(t) is the total number of Cases or Deaths on day, t (we use ln for loge).  The 

downward slopes vary by about a factor of three with time constants (1/slope) of between 1 and 3 

weeks; this suggests it may be possible to predict when an outbreak will end.  Is it possible to go 

beyond this and perform early prediction of the outcome in terms of the eventual plateau number of 

total confirmed cases or deaths? 

We test this hypothesis by showing that the trajectory of cases or deaths in any outbreak can 

be converted into a straight line.  Specifically ))(/ln(ln()( tXNtY −≡ , is a straight line for the correct 

plateau value N, which is determined by a new method, Best-Line Fitting (BLF).  BLF involves a 

straight-line facilitation extrapolation needed for prediction; it is blindingly fast and amenable to 

optimization.  We find that in some locations that entire trajectory can be predicted early, whereas 

others take longer to follow this simple functional form.  Fortunately, BLF distinguishes predictions 

that are likely to be correct in that they show a stable plateau of total cases or death (N value).  We 

apply BLF to locations that seem close to a stable predicted N value and then forecast the outcome at 

some locations that are still growing wildly.  Our accompanying web-site will be updated frequently 

and provide all graphs and data described here.
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INTRODUCTION 

In December 2019 a coronavirus, known as SARS-CoV-2, was discovered in Wuhan China 

(Wang, 2020).  The virus, perhaps from horseshoe bats (Zhou, 2020), spread between humans 

during January 2020, leading to the COVID-19 pandemic.  Early prediction of the number of cases 

and deaths in an epidemic or pandemic is of vital importance as it helps policy makers make informed 

decisions on the best allocation of resources and containment of the pathogen.  For this reason, 

many different groups have attempted to make reliable predictions of Sars-Cov-2 diffusion (Levitt 

2020a, Wang 2020, Dimeglio 2020, Wu 2020, Pinotti 2020).  These forecasts are based on a variety 

of mathematical and statistical models, which use different types of data (COVID-19 data, mobility 

data, demographic data) and take into account the impact of interventions, such as social distancing, 

proper hand hygiene and the use of masks.  Such variables differ from country to country, and 

moreover, the criteria to detect COVID19 cases and consider COVID19 as the cause of deaths also 

vary sometimes even for states/provinces in the same country.  These factors combine to complicate 

finding a universal method to fit and predict COVID-19 trajectories. 

We began working on COVID-19 in the last week of January 2020 using data released by Sudalai 

Rajkumar (Rajkumar), Johns Hopkins Coronavirus Resource Center (JHCS)  and Chinese internet 

(JOBTUBE).  On January 28th, there were numbers of cases and deaths for 6 days starting on 

January 22nd.  The daily death rate of COVID-19 (ratio of total deaths to total cases on a given day) 

was ten times higher inside Hubei, the province surrounding Wuhan, than everywhere else in China 

(non-Hubei).  Concerned and encouraged by this data, we started an Excel spreadsheet to follow the 

daily progression of COVID-19.  Each day, we made graphs of four simple measures.  Three were 

obvious: the total number of cases; the total number of deaths, and their ratio, the death rate.  The 

fourth was trivial but less obvious: the ratio of the total cases (or deaths) denoted as X(t) for today 

divided by that of yesterday.  This ‘fractional change function’ )(tf  measures exponential growth of 

X(t) with )1(/)()( −= tXtXtf . 

If the total today is always 10% more than yesterday the value today will be 1.1 times the value 

yesterday with f(t)=1.1.   In fact, on January 29th, the number of deaths today divided by that of 

yesterday was 1.3.  Were such exponential growth of 30% a day to continue, everyone on earth 

would die within 90 days.  Analyzing the data more completely over the next few days, we noticed on 

February 2nd that the fractional change for deaths in Hubei showed a steady decrease from 30% on 

January 29th to 18% four days later.  If this linear decrease of fractional change in deaths continued 
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then deaths in Hubei would stop on day 67, when the fractional change became equal 1 can X(t) was 

the same as X(t-1).  We reported this finding widely (Levitt, 2020b), although in retrospect, it was 

naïve to expect the linear decrease to continue. 

Nevertheless, our early interest in the fractional change function remained for two reasons.  

Firstly, because of the mathematical simplicity of )1(/)( −tXtX  as compared to more accepted 

measures like tR  (Wallinga 2007; Ferguson 2013).  Secondly, because, by analyzing the data of a 

small number of early epidemics (before mid-March 2020), we realized that the factional change 

function appears to have the same shape for multiple locations: it converges to 1 as fast as a 

decaying exponential (Levitt, 2020c).  Furthermore, because the fractional change function is a ratio, 

it is not affected by different systematic counts of cases/deaths due to different criteria: two countries 

that apply different criteria for deciding when a person is infected but have the same day to day 

growth will have the same fractional change function, provided that the counting method is kept 

consistent within the country. 

Elaborating further from this initial intuition we found a minimal mathematical model that allows 

us to consistently describe the spreading of the virus in different countries.  We also were able to 

reduce the very complicated task of fitting inconsistent data sets to the fitting of a straight line for 

which extrapolations and quality controls are trivial.  This allowed us to completely automate data 

fitting, extrapolation and assessment of the quality of fitting, all done simultaneously and at blinding 

speed (less than an hour of CPU for all the outbreaks in the world). 

 

METHODS 

Data Processing: 

Data is synced daily to two different sources for world data, US and Italy data. World data and 

US data including county and states levels is taken from (JHU), available from (Starschema).  Italy 

data at provinces level is taken from (Ita-regioni).  (We thank Levitt-group members Dr. João 

Rodrigues and Dr. Frederic Poitevin for integrating these data sources into a master file). 

For some location the data contains inconsistencies, which we call ‘data glitches’ and these 

are corrected as we did in our earliest analysis of the epidemic in Hubei, China (Levitt, 2020d).  We 

were well-aware that any alteration of the raw data must be justified and carefully recorded as we do 

here.  Such correction turns out to be important as the curve-fitting of the raw data is insensitive to 
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random counting errors, allowing us to use the raw data without any smoothing, but is sensitive to 

systematic errors like these.  There were three type of ‘data glitches’: ‘mis-glitches’, ‘rise-glitches’ and 

‘drop-glitches’.   (1) mis-glitches occur when the data on a given day is not updated.  Specifically, 

whenever two consecutive X(t) values (at times t-1 & t) are identical, we alter the value at t to be the 

average of the values at times t-1 & t+1.  (2) rise-glitches occur when new cases or deaths not 

previously reported are discovered and released on a particular day.  This first occurred in China 

Hubei on February 13th, when 13,000 cases detected clinically were added to the total.  These cases 

did not occur on the day reported but rather over the preceding days, so we corrected for by rescaling 

the number of confirmed cases on days prior to 13th February by a constant factor greater than 1 

(Levitt 2020d).  The same correction was applied on a small number of instances when additional 

deaths or confirmed cases were reported on a specific day as having been unreported on previous 

days.  Again, we added the deaths or confirmed cases to the previous days a fixed fractional 

increment (the complete list of with both types of correction is provided in the Supplementary 

Material).    (3) drop-glitches occur when the total numbers at a given location are decreased on a 

particular day.  This can never happen normally as totals always increase and is due to the realization 

that numbers reported previously include misidentified cases or deaths.  This glitch is less common 

than the other two.  It is corrected in the same way as the rise-glitch except that the factor multiplying 

total values on all previous days is less than 1. 

Mathematical background 

We consider )(tX , the discrete temporal series of cases (or deaths) in a given country, region 

or province.  In the most general scenario, we assume that )(tX  obeys the following ordinary 

differential equation (ODE): 

 )()()('
)(

tXtstX
dt

tdX
==    (1) 

In the discretized form the first derivative of X(t) is )()1()(' tXtXtX −−= , which is the number of 

new cases on day t. Equation (1) simply states that the number of new cases on a certain day is 

proportional to the number of cases on the previous day.  

The coefficient of proportionality s(t) is not constant.  It changes with time so as to take into 

account the dynamics of virus spreading, which may be affected by social distancing or the structure 

of social network interactions. 
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We are interested in a solution of Equation 1 that reaches a plateau value of N for a large t 

(often called a growth function).  A general form for many different kinds of growth functions can be 

written as follows (Koya 2013) 

m
t
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BeNtX
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 −
−
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δ
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1)(     (2) 

Equation 2 describes a rich family of curves which comprises Richards functions (Richards 

1959), generalized logistic functions, Weibull functions (Frechet 1927) etc.  While the overall shape of 

these curves depends on the various parameters, the asymptotic behavior has the same analytical 

form for all the curves in the family.  It is this behavior that allows us to introduce an important 

simplification that reduces the fitting of Equation 2 to fitting a straight line.  It is easy to show that the 

following relationship holds in the limit of large t: 

const/))(ln()ln(ln())(/ln(ln()( +=−−=−≡ UttXNtXNtY   (3) 

Equation (3) is true asymptotically for every function in the Koya Goshu family, and exactly true 

for the Gompertz function, G(t), (Gompertz 1825).  This function has been also used by other groups 

to fit data of COVID-19 trajectories (Castorina 2020, Catala 2020)  and is shown in Fig 1 and Fig. S1): 

UTte
NetG

/)(

)(
−−−=      (4) 

We also consider another function, which is the logarithm of the fractional change function )(tf  

defined above:  

  ))1(/)(ln())(ln()( −=≡ tXtXtftH    (5) 

For a Gompertz distribution H(t) is a decaying exponential function with the same time 

constant U, associated with Y(t): 

.)( −+=
−

−

constetH U

Tt

    (6) 

A similar relationship is valid asymptotically for other growing functions with the same time 

constant.so analysis of the behavior of H(t), provides a second method to derive the time constant U. 

 

Data fitting and validation 
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The simple linear relationship in Equation 3 provides a remarkable tool allowing us to fit the 

trajectory of virus spreading and predict the end points (N) in different locations.  Given a single data 

series X(t), the best estimate for ln(N) is determined as the value that maximizes the correlation 

coefficient of Y(t) and t (Figure 1).  The calculation of the correlation coefficient is very fast and can be 

completely automated for a large number of data, and implicitly it also provides a measure of the 

validity of the assumptions that lead to Equation 4. 

This calculation can be updated day by day, and eventually, the extrapolation for ln(N) will 

converge to the correct number.  As we will show in the results section, in many cases the end point 

can be predicted accurately at a very early stage. 

The pseudo-code for data fitting is the following: 

Read in csv date, Total Cases, Total Deaths for all the world 

location 

 Correct errors, in the date 

 Main loop for each location 

 for line_end to End { 

  for line_start 10 to line_end-10{ 

   step lnN from lnN1 to lnN2 by dlN{ 

    x=day; y = ln(N)-ln(X(t)) 

    CC = correlation_coef(x,y) 

    Find maximum CC 

   } if best CC > threshold 

   Keep line Y coordinates and the lnN values 

  } 

 }  

 
For each line_end, collect the predicted N values and histogram them to find the most common 

value that is then taken as the prediction for that particular line-end value.  We are well aware that 

this method can be improved in many ways some of which we are currently exploring. 

 

Data Smoothing 

All data is smoothed using the LOWESS method (locally weighted scatter-plot smoothing) 

developed by W. S. Cleveland at Bell Labs in 1988 (Cleveland 1988).  We use the original FORTRAN 

code written in Ratfor (Ratfor 1976) ( https://www.netlib.org/go/lowess ) and converted to Mortran 

(Mortran 1975).  The parameter F (the fraction of points used to compute each fitted value) is set to 

0.05, 0.07, 0.1, 0.12 and 0.14 for SMO1 to SMO5, respectively.  In addition, the smoothed output Y-
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axis values for SMO4 and SMO5 are smoothed a second time using F=0.1.  Smoothing is only 

applied to the total counts of cases and deaths.  Well-aware of the distortions that smoothing can 

cause, we made sure that the smoothing did not introduce false features at the start or end of the 

time series.  We also made sure that the smoothing did not move the location of the peaks as shown 

in Fig. S3.  We also test the root-mean-square value of the change in total values caused by the five 

different levels of smoothing.  When we do this for locations with more than 60 deaths and for 

locations with more than 1000 cases we find that the % RMS error average values are between 0.4% 

and 1.2% for F ranging from 0.05 to 0.14. 

One problem when using smoothed data to test prediction, is that smoothing uses future data 

points that would not have been available on the day the prediction would have been made. We allow 

for this in estimating when new cases and deaths peak by taking the effective peak date for 

completed situations as half way between the actual peak date found in the smoothed data and the 

date at which the level has dropped past the peak to half peak height.  We also generally avoid using 

smoothed data. 

 

RESULTS 

What To Expect From Simple Mathematical Functions 

The most important result of this study is that the Gompertz function can be transformed into a 

straight line provided one knows the final plateau value of total counts of either cases or deaths, 

denoted here as N.  This is shown in Fig. 1 and provides the basic method we use to fit the observed 

data.  Namely, vary the value of N to make the transformed Gompertz function Y(t) into a straight line 

and then derive parameters from the fit.  Although this result is asymptotically true for a broad class of 

growth functions, we find that the simple three parameter Gompertz growth function fits the trajectory 

of actual COVID-19 outbreaks very well (Fig. 2).  Specifically, the logarithm of the slope of ln(X(t)) 

(called H(t)) decreases linearly with time meaning that the exponential growth rate (the slope of 

ln(X(t))) is never constant so that growth is never exponential.  This linear decrease of H(t) is not true 

for all growth functions: specifically, the sigmoid function starts with pure exponential growth (Fig. 2, 

c-d).  We find this linear decrease of lnH(t) is in fact a universal property of all outbreaks (Fig. 3) 

justifying the broad use of the Gompertz function here. 

 

Classification of World COVID-19 Outbreaks  
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Table 1 lists those countries (89 in all) or regions (Italy, US & Canada, 147 in all) with more than 50 

deaths or 1000 cases.  The outbreaks have been classified by our completeness code that is based 

on the peaking of the number of new daily cases or new daily deaths.  (See Table 1 for explanation 

for explanation of the completeness code). 

 

 

Fitting With a Straight Line 

 Fig 4 (a)  shows the function Y(t) for deaths in the many different locations (countries or 

regions of countries) which have reached a plateau, and for which the prediction of the final N is 

stable.  It is evident that for all these locations the data generally follows a linear relationship thereby 

justifying a posteriori our working hypothesis.  This observation is confirmed by the fact that the 

correlation coefficient with time of Y(t) is close to 1 for the vast majority of the locations we examined.  

We also note that the time constants U (i.e. the inverse slope of the lines or the time-constant of 

decay) are very similar to each other, indicating the existence of universal properties in virus diffusion 

that are largely independent of the country. 

When considering confirmed cases (Fig. 4), we observe more diverse behavior in the time 

course of Y(t).  While for some countries the linear relationship still holds (Fig 4 (b)), in other countries 

we notice deviation from linearity (Fig. 4 (c)), which could indicate the existence of multiple outbreaks, 

or could reflect a change in the method of counting cases. 

By fitting Y(t) to a single straight line, we can average multiple outbreaks into a single major 

outbreak which will follow a Gompertz distribution, where the parameters U and T are the slope and 

the x-axis intercept at Y(t)=0, of Y(t).  This approach allows us to obtain a uniform description for every 

time series X(t) of cases and deaths in different parts of the world, but with loss of details for locations 

that do not follow a simple linear relationship. 

While a posteriori fits describe the raw data well, extrapolations of the final plateau before a 

given day are still subject to large fluctuations, due to the (double) exponential nature of Gompertz 

law.  In other words, when X(t) is small compared to N, the fitting line varies approximately like 

ln(ln(N));.even large variation of N barely affects the quality of the fit.  Vice versa, when X(t) 

approaches N, Y(t) becomes more and more sensitive to the correctness of the predicted value of N 

(Fig. S2)  The consensus predicted value of N converges to a plateau value with time, and then it is 

followed by real data with some delay.  This allows us to discriminate between locations in which 
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confirmed cases (or deaths) have reached or are near to reach the plateau, and locations for which it 

is still impossible to predict the plateau. 

 

A closer Look at Specific Locations 

While COVID-19 trajectories share many properties, each outbreak has its own features, which 

affect our ability to forecast the outcome in terms of the plateau value N for both cases and deaths.  

These features are best appreciated using two types of graphs, the Four-Panel graph and the Best 

Line Prediction graph described carefully in Fig. 5, which shows these two graphs for Germany a 

large but well-behaved outbreak.  The top panel of Fig. 5(a) shows that for smoothed data there are 

single peaks of new cases and new deaths, with the new deaths peaking 11 days after the new cases.  

This is almost exactly what we observed for the smaller and much earlier outbreak in China, non-

Hubei, where deaths were most likely to occur 10 days after a case was confirmed (Levitt, 2020f); 

this suggests that this interval may be connected to the natural progression of the disease in well-

managed scenarios.  The same delay between cases and deaths is also seen (as it should be) in the 

second panel.  The third panel shows the characteristic curvature recognized since our 14-Mar-20 

analysis (Levitt 2020b).  Together with the forth panel, it also reveals a small initial outbreak that 

started on 24-Jan-20, was contained and then followed by a much larger outbreak that started two 

weeks later and became clearly seen after another two weeks.  The Best Line Prediction (BLP) 

graphs for Germany show in Fig. 5 (b) that from 1-Apr-20, the plateau value of total cases would 

have been well-predicted.  For deaths, Fig. 5 (c) shows the eventual plateau value could have been 

predicted accurately on 10-Apr-20.  The blue dots on these two graphs show that the predicted 

plateau values vary wildly and a prediction can only be made because many straight-line fits give a 

similar consensus N value. 

In Fig. 6 we show four other locations which have reached a plateau and for which the 

extrapolation has not changed significantly in the last few weeks.  Although none of these locations 

are as clean as Germany (Fig. 5), one see that early predictions are unstable but converge to more 

realistic figures with time.  Fig. 6(a) shows New York City to be well-behaved in terms the smoothed 

peaks of new cases and new deaths although deaths and cases seem to occur at the same time.  

This suggests a situation less under control than either China, non-Hubei or Germany.  Nevertheless, 

the BLP graph shows that the final plateau value of N for deaths in New York City could have been 

predicted correctly on 10-Apr-20.  The decay of H(t) shown in the bottom panel of the four-panel 
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graph is very clean suggesting a single outbreak.  Fig. 6(b) shows Sweden to have very badly formed 

peaks of new cases and new deaths and deaths seem to occur before cases, an impossibility likely 

due to decreased counting of cases as the epidemic proceeds.  The BLP graph predicts a plateau 

value that is not constant although it does look as if total deaths will plateau at about 6,000.  Fig. 6(c) 

shows Russia to also have a very extended peaks of new cases and deaths.  The number of new 

cases peaked 7 weeks ago but new deaths remain high.  Nevertheless, the BLP graph shows that the 

predicted plateau value of N for deaths is increasing more and more slowly and may well converge to 

a value of about 16,000, almost double the current number of deaths.  Fig. 6(c) shows Mexico deaths 

to be increasing even more rapidly than Russia and at present it is impossible to predict the plateau. 

In Table 2, we compare the predictive power on the Best Line Prediction (BLP) with that of the 

Peak Detection Method (PDM).  Checking all the converged locations where the current value is 

expected to close to the expected plateau value of N shows that the BLP is significantly better than 

the PDM.  Both methods seem to be able to make their predictions at about the same time (on 

average, the PDM predicts two days earlier than the BLP based on our assumed value for the peak 

confirmation date. 

In Table 3 we look at the most active locations to identify cases where prediction of outcome 

could have significant impact.  For this we use two criteria:  First, that the forecast be reliable in that 

the plateau is stable in terms of its slope, its percent standard deviation and at least seven days at 

this plateau value.  Second, that the forecast plateau is a significant increase over the current level. 

At the moment of writing this manuscript, many countries or regions are still in the fast growing 

phase, and it is still impossible to predict the outcome of the epidemic in them (see Table 3).  For 

others we can make predictions as shown in Fig. 7.  Panels (a) & (b) show clearly that the BLP graph 

for Peru predicts a clear plateau for cases (N=478,000), but the predicted plateau for deaths is still 

rising rapidly.  The plateau value for cases is almost double the current level of 257,000 making this a 

very meaningful forecast.  Panel (c) shows that for Brazil the BLP predicts a stable plateau of 98,000, 

another very meaningful forecast, again almost double the current level of 47,000.  Panel (d) shows 

that cases in Belarus are predicted to plateau at 82,000, although there is a less clear leveling.  Panel 

(e) shows a split prediction for cases in the United Arab Emirates where there are two plateaus, at 

49,000 and about 60,000, respectively; such splitting is very rare.  Panel (f) shows that deaths in 

Kuwait are perhaps going to plateau at 400.  Panels (a) to (c) are important forecasts with a 
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meaningful impact, whereas those in panel (d) to (f) show the diversity of behavior making automatic 

forecasting a challenging problem. 

 

Open Availability of all Data 

All graphs and tables are available online using apps written by Dr. Scaiewicz.  The app at 

http://levitt1.herokuapp.com/ shows the classification for different countries and updated numbers and 

graphs. The app at http://levitt.herokuapp.com/ shows the predictions in the Best Line graphs. 

Availability of the Computer Codes 

We would like to make the computer codes we use available to all but these are currently 

written in a variety of languages that few would want to use.  While Dr. Scaiewicz uses clean self-

documenting Jupyter Python notebook code, Dr. Levitt still develops in a FORTRAN dialect call 

Mortran (Mortran 1975) that he has used since 1980.  The Mortran preprocessor produces Fortran 

that is then converted to C-code using f2c.  This code is at least a hundred-fold faster than Python 

code.  His other favorite language is more modern, but involves the use of the now deprecated 

language Perl and Unix shell scripts. 

Nevertheless, the methods proposed here are simple; they are easily and quickly implemented 

by a skilled programmer.  Should there be interest, we would be happy to help others develop the 

code and test them against ours.  We also realize that there is ample room for code optimization.  

Some of the things that we have considered are pre-calculating sums of terms to convert computation 

of the correlation coefficient from a sum over N terms to the difference of two sums.  Another way to 

speed the code would be to use hierarchical step sizes in a binary search to find the value of lnN that 

gives the best straight line. 

Our study involving as it did a small group working in different time zones and under extreme 

time pressure revealed that scientific computation nowadays faces a Babel of computer languages.  

In some ways this is good as we generally re-coded things rather than struggle with the favorite 

language of others.  Still, we worry about the future of science when so many different tools are used.  

In this work we used Python for data wrangling and some plotting, Perl and Unix shell tools for data 

manipulation, Mortran (effectively C++) for the main calculations, xmgrace and gnuplot for other 

plotting, Excel (and Openoffice) for playing with data.  And this diversity is for a group of three! 
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DISCUSSION 

Non-Exponential Growth 

It is evident from our data analysis that the growth of a COVID19 epidemic does not follow an 

exponential growth law even in the very first days, but instead its growth is slowing down 

exponentially with time.  While all growth functions decelerate exponentially when approaching the 

plateau, the Gompertz function is unique in that it is decelerating from the first day, and thus can fit 

the first part of the COVID-19 outbreak.  Moreover, its relatively simple functional form, allowed us to 

produce an efficient computer code to fit data in all different locations in a consistent way. 

As would be expected, we find several examples in which this simple law is not followed, 

especially when looking at confirmed cases (deaths appear to follow the Gompertz Function more 

consistently).  For some of these countries (e.g. Iran) it is evident that a second outbreak occurred 

well separated in time from the first.  In other countries, (e.g. South Korea) we observe a change in 

the dynamics of the virus spread, which could be related to the adopted containment strategy or a 

difference in the level of testing.  Even though such unusual dynamics cannot be predicted from the 

beginning, our fitting method is able to identify abrupt changes and will identify the slowest 

characteristic time and will, therefore, be able to produce a prediction for the new plateau. 

We believe that the analysis in our study shows conclusively that COVID-19 epidemics grow 

according to the Gompertz Function and not the Sigmoid Function (Fig. 2).  The main difference 

between these functional forms is that the Sigmoid Function starts off growing exponentially (it has a 

constant exponential growth factor) and then slows down (blue line in Fig. 2(c)).  The Gompertz 

Function is never exponential but rather has a growth rate that decreases exponentially from the very 

first confirmed case.  This does not make sense as when there are very few cases, it should be easy 

for each infectious individual to find people to infect, which would lead to exponential growth at the 

early stages of the outbreak.  The Gompertz Function normally applies to conditions when the growth 

is constrained by some global resource.  For example, bacteria growing with a limited food supply or 

a fire in an enclosure where oxygen is limited. 

What is limited for coronavirus?  First clues came from the large number of invisible cases 

indicated by the early serological studies by our Stanford colleagues (Bendavid 2020).  More recently, 

a paper in Science (Silverman 2020) showed that millions of people were infected in the USA before 
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there were known cases.  The existence of invisible cases of individuals who are mildly symptomatic 

and, therefore, not counted as confirmed cases may explain the non-exponential behavior of COVID-

19: the known cases cannot easily find people to infect as the hidden invisible cases have already 

infected them.  We realize that other factors may limit growth.  For example, the structure of the 

human interaction network can lead to sub-exponential growth (Moreno 2002).  Still, we believe that 

as SARS-CoV-2 is so infectious, it does not have a problem finding people to infect early on due to 

the local network structure. 

Initial sub-exponential growth is not a unique feature of COVID-19, but has been observed in 

previous viral outbreaks and needs to be taken into account to produce accurate predictions (Chowell 

2016).  Our method provides a quick way to analyze early epidemic data and identify and also 

quantify sub-exponential growth in terms of the time constant U. 

 

Clean and Curate Data Carefully 

An essential step for our study has been to clean and curate the data made available from so 

many different countries.  Had we not filled in missing value or spread large changes back in time, the 

sensitive methods we use would fail.  Of course, we need to document every step we take so as not 

to manipulate data in some arbitrary way.  In taking this approach we were aided by the fact that we 

started the project very early on when there were just 24 data points: six days of cases and deaths in 

two regions of China (Levitt 2020c). 

Another consequence of being so intimately connected with the data is that we had to collect 

data manually until the various repositories became established.  We are now quite certain that the 

quality of data is more or less the same from all sources.  The question of data reliability is often 

raised and we believe that the data has to obey so many rules of self-consistency that cheating would 

be almost impossible.  For example, in Fig. 2, we see that the raw data from China, non- Hubei. 

which was available in late January is essentially indistinguishable from the data released for New 

Zealand two months later. 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 30, 2020. .https://doi.org/10.1101/2020.06.26.20140814doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.26.20140814
http://creativecommons.org/licenses/by-nd/4.0/


 14 

Sanity Tests To Prove We Do Not Inadvertently Cheat 

In a study like this involving a huge body of data, computer programs written quickly and the 

intense pressure to get results out while they can still be useful, one needs to be very self-critical at 

every stage looking for computer bugs that could explain any good results that one finds.  Specifically, 

we are trying to test our forecasting method by going back in time and trying to predict something that 

was not known then but is know now.  Such a process, often called ‘postdiction’ in contrast to 

‘prediction’, is extremely dangerous.  We guard against it by running calculations with data sets that 

have been specially prepared to eliminate all data after a certain previous date.  This is tricky in that 

one cannot use smoothed data as smoothing looks into the future to smooth the present.  In this work 

we made a series of data sets going back into the past and showed that the results from a past date 

would have been obtained with a data set that did not include data after that date. 

 

Work in progress 

We have been studying COVID for five months and worked on all aspects of the analysis.  

Some of the related projects that we are working on include:  

(a) Predict the future time-course of the epidemic and not just the plateau value N.  This will 

involve better understanding of the two other parameters of the best line fit, U & T. 

(b) In what ways are the detailed trajectories from various locations different?  What affects the 

trajectory in terms of N and U: population size, population age/health, physical size of 

location, social distancing or lockdown measures? 

(c) What is the burnout saturation value of N?  What is the population fatality ratio if the 

infection runs its course? 

 

CONCLUSIONS 

This manuscript is being submitted as a preprint, which is something that we have never done 

before.  We do this for two reasons.  One is to make our discoveries available to all at a stage where 

they will still be useful.  Another is to solicit broad criticism and comments that are essential to the 

scientific process. 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 30, 2020. .https://doi.org/10.1101/2020.06.26.20140814doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.26.20140814
http://creativecommons.org/licenses/by-nd/4.0/


 15 

ACKNOWLEDGMENTS 

This analysis started as a team effort based on our 14-Mar-20 analysis (Levitt 2020b); besides 

the current authors, it involved Patrick Tam (Hong Kong, see www.covibes.org), Frédéric Poitevin, 

João Rodrigues and Fatima Pardo-Avila (all at Stanford).  We also had discussions and shared ideas 

with Eran Bendavid (Stanford), Cathrine Bergh (Royal Institute of Technology, Sweden) and Siri 

Camee van Keulen (Utrecht University, The Netherlands).  We are most grateful to them.  We offer 

special thanks to João Rodrigues, for his automatic daily data updates and invaluable advice on 

writing Python apps. 

This work was supported by a US National Institutes of Health award R35GM122543 to M.L. 

and by a National Natural Science Foundation of China Grant No. 31770776 to F.Z.  Michael Levitt is 

the Robert W. and Vivian K. Cahill Professor of Cancer Research. 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 30, 2020. .https://doi.org/10.1101/2020.06.26.20140814doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.26.20140814
http://creativecommons.org/licenses/by-nd/4.0/


 16 

REFERENCES 

(Bendavid 2020) E. Bendavid, B. Mulaney, N. Sood, S. Shah, E. Ling, R. Bromley-Dulfano, C. Lai, Z. 

Weissberg, R. Saavedra-Walker, J. Tedrow, D. Tversky, A. Bogan, T. Kupiec, D. Eichner, R. 

Gupta, J. Ioannidis, J. Bhattacharya.  COVID-19 Antibody seroprevalence in Santa Clara County, 

California.  https://doi.org/10.1101/2020.04.14.20062463 

(Castorina 2020) P. Castorina, A. Iorio, D. Lanteri.  Data analysis on Coronavirus spreading by 

macroscopic growth laws.  International Journal of Modern Physics C, 2050103. 

https://doi.org/10.1142/S012918312050103X 

(Catala 2020) M. Catala, S. Alonso, E. A. Lacalle, D. Lopez, P. Cardona, C. Prats.  Empiric model for 

short-time prediction of COVID-19 spreading.  PLOS Computational Biology.  May 19 2020, p.1-

14, https://www.medrxiv.org/content/10.1101/2020.05.13.20101329v1 

(Wang 2020) C. Wang, P. W. Horby, F.G Hayden, G. F. Gao.  A novel coronavirus outbreak of global 

health concern.  The Lancet, 395, Issue 10223, 470–473. 

(Chowell 2016) G. Chowell, L. Sattenspiel, S. Bansal, C. Viboud.  Mathematical models to 

characterize early epidemic growth.  A Review.  Phys Life Rev. 2016 Sep; 18: 66–97. 

(Cleveland 1988) W. S. Cleveland & S. J. Devlin (1988).  Locally weighted regression: an approach to 

regression analysis by local fitting.  Journal of the American Statistical Association, 83:403, 596-

610.  https://doi.org/10.1080/01621459.1988.10478639 

(Dimeglio 2020) C. Dimeglio, J. Loubes, B. Deporte, M. Dubois, J. Latour, J. Mansuy, J. Izopet.  The 

SARS-CoV-2 seroprevalence is the key factor for deconfinement in France. J Infect. 2020 Apr 

29  https://doi.org/10.1016/j.jinf.2020.04.031 

(Ferguson 2013) A. Cori, N. M. Ferguson, C. Fraser, S. Caucheme  A New Framework and Software 

to Estimate Time-Varying Reproduction Numbers During Epidemics, American Journal of 

Epidemiology, 178, 1 November 2013, Pages 1505–1512, https://doi.org/10.1093/aje/kwt133 

(Frechet 1927) M. Fréchet.  Sur la loi de probabilité de l'écart maximum. Annales de la Société 

Polonaise de Mathematique, Cracovie, 6: 93–116. 

(Gompertz 1825) B. Gompertz.  On the nature of the function expressive of the law of human 

mortality, and on a new mode of determining the value of life contingencies.  Philosophical 

Transactions of the Royal Society of London. 115: 513–585. 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 30, 2020. .https://doi.org/10.1101/2020.06.26.20140814doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.26.20140814
http://creativecommons.org/licenses/by-nd/4.0/


 17 

(Koya 2013) P. R. Koya, A. T. Goshu.  Generalized Mathematical Model for Biological Growths, Open 

Journal of Modelling and Simulation, 1 No. 4 (2013), Article ID: 38842. 

Levitt 2020a)  .9.Analysis_of_Coronavirus-2019_Data_Michael_Levitt 

https://www.dropbox.com/s/pn9k4c9fa4cuior/9.Analysis_of_Coronavirus-

2019_Data_Michael_Levitt.pdf?dl=0 (First China analysis that used curve fitting). 

(Levitt 2020b)  1.The_Corona_Chronologies. Part I - China. Part II. Rest_of_World_Michael_Levitt,Stanford_r.pdf 

https://www.dropbox.com/s/ovlsfr53horcmsn/1.The_Corona_Chronologies.%20Part%20I%20-

%20China.%20Part%20II.%20Rest_of_World_Michael_Levitt%2CStanford_r.pdf?dl=0  

(14-Mar-20 China and World analysis). 

(Levitt 2020c)  2.Analysis_of_Coronavirus-2019_Data_Michael_Levitt2.pdf 

https://www.dropbox.com/s/46lw7pcrlhpuu94/2.Analysis_of_Coronavirus-

2019_Data_Michael_Levitt2.pdf?dl=0  (First analysis on 2 Feb 2020). 

(Levitt 2020d)  14.Analysis_of_Coronavirus-2019_Data_Michael_Levitt 

https://www.dropbox.com/s/rja6r86da8ul0a6/14.Analysis_of_Coronavirus-

2019_Data_Michael_Levitt.pdf?dl=0 (China analysis that corrected for 13 Feb. data) 

(Levitt 2020e)  2. All_Michael_Levitt_22_Reports_on COVID-19_2-Feb-to-3-Mar.pdf 

https://www.dropbox.com/s/fp90jfszmyxut2g/2.%20All_Michael_Levitt_22_Reports_on%20COVI

D-19_2-Feb-to-3-Mar.pdf?dl=0 (Combine all 22 Analyses for China 2-Feb. to 3-Mar). 

(Levitt 2020f)  28.Analysis_of_Coronavirus-2019_Data_Michael_Levitt.pdf 

https://www.dropbox.com/s/3oy8plmtgcupvjh/28.Analysis_of_Coronavirus-

2019_Data_Michael_Levitt.pdf?dl=0 (Levitt Analysis of 10 day delay between Case and Death). 

(Moreno 2002) Y. Moreno, R. Pastor-Satorras, A. Vespignani.  Epidemic outbreaks in complex 

heterogeneous networks.  The European Physical Journal B-Condensed Matter and Complex 

Systems, 26, 4, 521-529. 

(Mortran 1975)  User Guide to Mortran3.  http://rcwww.kek.jp/research/egs/epub/manuals/append4.html  

(Pinotti 2020) F. Pinotti, L. Di Domenico, E. Ortega, M. Mancastroppa, G. Pullano, E. Valdano, P. 

Boëlle, C. Poletto, V. Colizza.  Lessons learnt from 288 COVID-19 international cases: 

importations over time, effect of interventions, under-detection of imported cases.  

https://www.medrxiv.org/content/10.1101/2020.02.24.20027326v1 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 30, 2020. .https://doi.org/10.1101/2020.06.26.20140814doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.26.20140814
http://creativecommons.org/licenses/by-nd/4.0/


 18 

(Ratfor 1976)  B. W. Kernighan and P. L. Plauger.  Software Tools.  Addison-Wesley Longman 

Publishing Co., Inc.  Boston, MA,1976. 

(Richards 1959) F. J. Richards.  A flexible growth function for empirical use.  Journal of Experimental 

Botany.  10, 290-300. http://dx.doi.org/10.1093/jxb/10.2.290 

(Silverman 2020) J. D. Silverman, N. Hupert, A. D. Washburne.  Using influenza surveillance 

networks to estimate state-specific prevalence of SARS-CoV-2 in the United States. Science 

Translational Medicine 22 Jun 2020:  http://dx.doi.org/10.1126/scitranslmed.abc1126  

(Wallinga 2007) J. Wallinga and M. Lipsitch How generation intervals shape the relationship between 

growth rates and reproductive numbers, Proc. R. Soc. B, 274, 599–604. 

http://dx.doi.org/doi:10.1098/rspb.2006.3754  

(Wang 2020) H. Wang, Z. Wang, Y. Dong, R. Chang, C. Xu, X. Yu, S. Zhang, L. Tsamlag, M. Shang, 

J. Huang, Y. Wang, G. Xu, T. Shen, X. Zhang, Y. Cai. Phase-adjusted estimation of the number 

of Coronavirus Disease 2019 cases in Wuhan, China. Cell Discov 6, 10 (2020). 

https://doi.org/10.1038/s41421-020-0148-0  

(Wu 2020) Wu J.T., Leung K.  Nowcasting and forecasting the potential domestic and international 

spread of the 2019-nCov outbreak originating in Wuhan, China: a modelling study.  The Lancet. 

2020; 395(3). 

(Zhou 2020)  P. Zhou, X. Yang, X. Wang, B. Hu, L. Zhang, W. Zhang, H. Si, Y. Zhu, B. Li, C. Huang, 

H. Chen, J. Chen, Y. Luo, H. Guo, R. Jiang, M. Liu, Y. Chen, X. Shen, X. Wang, X. Zheng, K. 

Zhao, Q. Chen, F. Deng, L. Liu, B. Yan, F. Zhan, Y. Wang, G. Xiao, Z. Shi. A pneumonia 

outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270–273 (2020). 

https://doi-org.stanford.idm.oclc.org/10.1038/s41586-020-2012-7  

 

 

ONLINE RESOURCES USED OR CITED IN THE TEXT 

(Rajkumar) https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge 

(JHCS) https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6 

(JOBTUBE) https://jobtube.cn/wv/?from=groupmessage&isappinstalled=0 

(JHU) https://s3-us-west-1.amazonaws.com/starschema.covid/JHU_COVID-19.csv 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 30, 2020. .https://doi.org/10.1101/2020.06.26.20140814doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.26.20140814
http://creativecommons.org/licenses/by-nd/4.0/


 19 

(Starschema) https://starschema.com/covid-19-data-set 

(Ita-regioni) https://raw.githubusercontent.com/pcm-dpc/COVID-19/master/dati-regioni/dpc-

covid19-ita-regioni.csv 

(Levitt-Twitter) https://twitter.com/MLevitt_NP2013/status/1256511516863586304?s=20 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 30, 2020. .https://doi.org/10.1101/2020.06.26.20140814doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.26.20140814
http://creativecommons.org/licenses/by-nd/4.0/


 20 

LEGENDS FOR MAIN TABLE & FIGURES 

Table 1:  Showing the classification scheme we use for all worldwide outbreaks.  The Classification 

Code consist of four symbols, two for Cases and two for Deaths that are initially set to ‘=’.  Position 1 

is ‘c’ if New Cases per Day have reached a maximum and are dropping; position 2 is set to ‘C” if New 

cases per Day have dropped to below half the maximum values; positions 3 & 4 are set to ‘d’ and ‘D’ 

when new deaths per day have reached a maximum or have dropped to half their maximum value.  

The determination of peaking is made using heavily smoothed data (SMO5) (see text). 

 

 

Table 2:  Comparing Best Line Prediction (BLP) and Peak Detection Method (PDM) for Prediction of 

Plateau N Value.  The plateau N value predicted by the Best Line method is significantly more 

accurate than that predicted by the Peak Detection method.  This can be measured by the Percent 

Error of the Prediction defined as 100*(Predicted_Plateau_Value - Value_Now)/(Value_Now).  For the 

BLP method this number averages 11% for cases prediction and 9.5% for deaths prediction, whereas 

the corresponding values for the PDM are more than double at 25.3% and 23.7%, respectively.  

Another way to measure the advantage of BLP over PDM is to count for different locations how often 

BLP does better than PDM.  Here BLP is better than PDM in 74% of the locations for cases and in 

73% of the locations for deaths.  

 
 

Table 3.  Forecasts of Plateau N Ordered by Size and Certainty (green shading more certain but may 

involve small increases to plateau so less important). The locations here are not converged (their 

classification code is not 'cCdD').  Rather than look at the individual Best Line graphs manually, we do 

line fitting to the predicted plateau N working back from today.  Key parameters are the slope of the 

line through the plateau values, which should be small, the Percentage Standard Deviation of the 

Plateau value (%SD) and the number of days with a plateau prediction within 20% of the predicted 

value. 

 

 

Figure 1. (a)  Basic properties of the Gompertz functions and its logarithms.  The Gompertz function 

is an exponential of an exponential written as 
UTte

NetG
/)(

)(
−−−= or ( )( )UTtNtG /)(expexp)( −−−= , and 

defined by three parameters N, T & U, each with clear physical meaning.  Parameter N is the 
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asymptotic number, the maximum plateau value that G(t) reaches after a long time, t.  Parameter T, is 

the point of inflection, which is the time in days at which the second-derivative of G(t) is zero and its 

first derivative is a maximum.  It is a natural mid-point of the function where the value of 

G(T)=N/e=0.37N.  The Parameter U, is the most important as it changes the shape of the curve; it is a 

time-constant measured in days. 

Given the double exponential nature of G(t), one might expect to use a double logarithm to simplify it.  

The function G(t) itself has the expected S-shape of saturating growth function.  Taking the logarithm 

once gives  ( ) ( ) ( )UTtNtG /)(expln)(ln −−−= , where ln is the natural logarithm or loge ; it is shown in 

dashed line increasing very rapidly at first but curving steadily to become horizontal at saturation.  

Rearranging as ( ) ( ) ( )UTttGN /)(exp)(lnln −−=− and taking the logarithm a second time gives 

( ) ( )[ ] ( )[ ] UTttGNtGNtY /)()(/lnln)(lnlnln)( −=−=−−= .  This function is shown in the dotted line to be a simple 

straight line.  This is hugely significant as extrapolation of a straight-line is trivial: just keep going 

straight.  As we show in the text, the function Y(t) is always a straight line for the Gompertz function.  

More generally, Y(t), tends to a straight line for a very general class of saturating functions 

(b)  Illustrating how the linearity of the Y(t)=-ln(ln(N/G(t)) depends on the value of N.  The linearity 

shown in (a) has an apparent weakness, namely the line is only straight when the value of N is the 

correct saturation value and this value will be unknown until the epidemic is over.  This weakness is in 

fact a strength.  One can try different values of N and find the one that gives a straight line.  In fact, 

“straighten the line” is much more relevant than the saying “flatten the curve” popularly applied to 

COVID19. 

 

 

Figure 2.  Showing that the data from two outbreaks far apart in both space and time are almost 

indistinguishable.  The raw data shows as colored circled of two well-controlled outbreaks in China, 

non-Hubei (all China except for Hubei Province) shown panels (a) & (c) and in New Zealand panels 

(b) & (d) are essentially identical.  The fits for the data (solid lines) as also very similar except for the 

maximum plateau value of confirmed cases N=13,219 & 1,500, respectively) and the mid-point date in 

number of days from 23 January 2020, T=32.13 & 90.50.  The U parameter is also very similar at 

U=5.87 & 5.88 days, respectively.  Use of the Sigmoid Function in panels (c) & (d) give a fit that is 

less good that that obtained with the Gompertz Function in panels (a) & (b).  This is shown by higher 

fit residuals (10.158 vs. 7.989 and 0.037 vs 0.035).  More importantly, when compared to the 
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Gompertz function, the Sigmoid function is less able to capture the behavior at the start of the 

outbreak.  Following our four-panel graphs, we plot the Total Number of Cases (black line for X(t), on 

left-hand y-axis, which is a log-scale), the number of New Cases (red line for X(t)-X(t-1), right hand y-

axis, which is a linear scale), and Gradient of log Total Cases (blue line for H(t) = ln(X(t)) – ln(X(t-1)) = 

ln(X(t)/X(t-1)) on the left-hand y-axis, log scale).  Note that for both the real data and the Gompertz 

function, ln[ln[(X(t)/X(t-1))]] is a linear function of time, t. 

 

 

Figure 3.  Showing the trajectory of ln[H(t)] or ln[ln[X(t)/X(t-1)]] for all selected locations with more 

than 50 deaths.  From Fig. 2, ln[H(t)] is expected to decrease linearly for the Gompertz function.  As 

H(t)=ln[X(t)] – ln[X(t-1)] is the difference of two numbers, it is subject to a high level of noise. For this 

reason, we smooth the X(t) using SMO5 LOWESS smoothing.  Panel (a) shows the trajectories of 

ln[H(t)] for cases.  Panel (b) shows ln[H(t)] for deaths.  As there are often relatively low numbers of 

deaths, the trajectories for deaths are still noisy even after smoothing (NB.  The noise in some 

highlighted locations is unexpectedly high and warrants further investigation). 

 

 

Figure 4.  Showing the trajectory of Y(t)) or –ln(ln(N/X(t)) = -ln(ln(N)-ln(X(t))) for all selected locations 

with more than 50 deaths.  From Fig. 1, Y(t)) is expected to decrease linearly for the Gompertz 

function and, for more general growth functions in the limit of large t (see Methods).  In panel (a) we 

show the raw data for Y(t) for deaths in a selection of more than 130 locations (thin gray lines), and 

emphasize 5 representative ones with a thicker line. For all such selected locations, Y(t) is well 

approximated by straight lines with a very similar slope. Panels (b) shows Y(t) for confirmed cases in 

119 locations. In panel B we emphasize locations for which the function Y(t) is again well 

approximated by a straight line, while in Panel (c) we show some locations for which this is not true 

anymore.  This is expected if multiple outbreak of comparable intensity happens in a country, or if 

there is change in the dynamics of infections or the way cases are counted. 

 

 

Figure 5.  Showing for Germany the Four-Panel graph (left) and Best Line Prediction (BLP) graphs 

right.  In the Four-Panel graph, which has been carefully refined since Feb. 2020 to show the most 

relevant data in an epidemic,   the top panel is New Cases per Day (red, left y-axis) and New Deaths 
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per Day (black, right y-axis) both normalized to the same height.  The second panel is Total Cases 

and Deaths shown in their respective color and y-axis and also normalized.  The third panel is these 

same totals plotted on a log10 scale (no need for normalization).  The fourth panel is ln[(X(t)/X(t-1)  

plotted on a log10 scale (log of the fractional change used in our first analysis, Levitt 2020c).  Here we 

consistently use loge or ln for calculations as growth functions are defined in terms of the exponential, 

e; we use log10 to define logarithm y-axes as powers of ten are more familiar to us humans than are 

powers of e. 

In the BLP graph, Dates are plotted along the x-axis and Total Number of either Cases or 

Death along the y-axis.  The actual trajectory of total data counts is plotted as heavy black circles and 

increases monotonically with time.  The horizontal red dashed line marks the maximum total count 

number on the latest day included (date specified in the title).  The blue dots are the candidate 

predicted N plateau values (the predicted final completion total count) shown at the Date value where 

they were made.  Specifically, only data up to including this date can be used to find the ln(N) value 

that gives the best line.  The brown squares enclose the actual predicted N value that is found by 

most of the predictions at that date (most overlapping blue dots are in the boxes). 

 

 

Figure 6.  Showing four locations, which behave differently because they are at different stages of 

their outbreak.  (a) Deaths in New York City, which was the hardest hit location with more deaths per 

population than anywhere else.  The smoothed data in the lower part of the Four-Panel graph shows 

clean peaks for Cases and Deaths and a linear descent H(t) on the log scale.  The Best Line 

Prediction in the upper part shows that the plateau number of deaths was indicated as early as 4-Apr-

20 and confirmed a week later.  (b) Deaths in Sweden, which adopted very limited social distancing 

and no lockdown.  The smoothed curve of new cases and new deaths remains elevated for much 

longer than in NYC although there is a very similar linear descent H(t) on the log scale.  The BLP 

seems to edge up but a good prediction of the current plateau could have been made on 22-Apr-20.  

This is 10 days earlier than a prediction of Sweden peaking we made on Twitter on 2-May-20 (Levitt-

Twitter) showing the power of the BLP method that we did not have back then. (c) Confirmed Cases 

Russia are growing rapidly, although the number of new cases per day peaked on 8-May-20 they 

remain stable at a high level.  The BLP method tentatively predicts a plateau N value of about 

700,000 cases in Russia.  (d) Deaths in Mexico are still far from any clear plateau value.. 
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Figure. 7:  Showing the BLP graphs for active locations with prediction approaching convergence of 

N (Peru, Brazil, Belarus, UAE, Kuwait)).  These locations have been selected from Table 3 because 

the predicted plateau is significantly higher than the current level (red dashed horizontal line).   As this 

involves locations with large numbers of expected additional cases and deaths.  Forecasting the 

outcome could be of major value to the countries involved.  The locations also show a range of 

different behaviors. 

  

Comment [M1]: TO DO 
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LEGENDS FOR SUPPLEMENTARY FIGURES 

Figure S1.  Showing how the U parameter has a major effect on the shape of the Gompertz Function, 

affecting as it does the trajectory of the Total Count (X(t), in black), the new counts by day ((X(t)-(X(t-

1), in red) and the gradient of the ln(Total Counts), which is ln[X(t)]-ln[X(t-1)] or ln[ln[X(t)/X(t-1)]] (in 

blue).  The solid lines show trajectories for the Total Counts, New Counts, and Gradient (H(t)) for a U 

parameter of 7 days, the shortest decay time seen for real cases (Table 2).  The dotted lines show 

the same data for U= 4 days and the dashed line shows the same data for U=21 days .  The 

trajectory of ln[H(t)], the gradient of ln[X(t)], is a simple straight line with slope of 1/U 

 

 

Figure S2.  (a) Showing how straight line fits have strong predictive power.  The lines in green are 

fitted to data that was available 50 days ago.  The line in magenta is fitted to current data and is a 

straight-line continuation of the best line 50 days ago.  The Correlation Coefficient (CC), which is 

used to measure the straightness of the line as a function of ln(N), is sensitive to departure from 

linearity.  (a) Shows that as ln(N) varies the CC value reaches its maximum smoothly.  (b) Distribution 

of correlation coefficients value as the guessed value of ln(N) is changed. 

 

 

Fig S3.  Showing our Four-Panel graphs with different levels of smoothing of the data using the 

LOWESS method (see text).  The strength of the smoothing increasing progressively for SMO1 

through SMO5 and one sees that while local ripples are eliminated there is no shift of the peak 

position.  Such shift do occur with simpler smoothing schemes such a running averages. 
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Supplementary Methods 

Proof that any growth function has a Y(t) function that tend to be linear for large t. 

 

 

 

constUttkBmtXN BmeNtX ZZBe BemNtX
tkZ tkt

tk
+=







 −
=








−

−=








−=−

=














−=
















 −
−

→








 −
−

∞→








 −
−

/)(lnln )(ln )ln(limlim
ln)(ln

δ

µ
ν

ν

ν

ν

δ

µ

δ

µ

δ

µ

1

0

1

0

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 30, 2020. .https://doi.org/10.1101/2020.06.26.20140814doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.26.20140814
http://creativecommons.org/licenses/by-nd/4.0/


Fig. 1:  Showing  the Gompertz Function Y(t) Straightened to Line Y(y) to Predict Plateau N.

(a) (b)
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Fig. 2: Showing How Early Raw Data Analysis Shows Non-Exponential Growth.

(b)(a)

(c) (d)
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Fig. 3: Value ln[H(t)]=ln[ln[X(t)/X(t-1)]] Deceases Linearly as Expected for Gompertz Function. 

(data is smoothed with SMO5 as difference of small numbers)

(b)

(a)
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Fig. 4: Function Y(t)=ln[ln[N/X(t)]] Give Straight Lines for Raw Unsmoothed Data.

(b)

(a)

(c)
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Fig 5: Showing Best Line and Smooth Peak 

Graphs for Germany.

(b)

(a)

(c)
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Fig 6: Plots showing Best Line and Smooth Peak Graphs for Selected Locations.

(b)(a) (c) (d)  . 
C

C
-B

Y
-N

D
 4.0 International license

It is m
ade available under a 

 is the author/funder, w
ho has granted m

edR
xiv a license to display the preprint in perpetuity. 

(w
h

ich
 w

as n
o

t certified
 b

y p
eer review

)
T

he copyright holder for this preprint 
this version posted June 30, 2020. 
.

https://doi.org/10.1101/2020.06.26.20140814
doi: 

m
edR

xiv preprint 

https://doi.org/10.1101/2020.06.26.20140814
http://creativecommons.org/licenses/by-nd/4.0/


Fig. 7: Best Line Predictions for Six Active Locations Ready for Forecast.

(b)(a) (c)

(d) (e) (f)
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Fig. S1 Showing affect of the parameter U (in days) on the Gompertz Function.

(b)

(a)
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(b)(a)

Fig. S2: Showing how the line Y(t)=ln[ln[N/X(t)]] varies for different values of N.  The 

straightness of the line is measured by the correlation coefficient between Y(t) and t.  The 

value of the correlation coefficient varies smoothly as value of N is changed
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Fig S3.  Showing five levels of smoothing on our standard four panel plots.

(b)(a) (c)

(d) (e) (f)
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China_non_Hubei cCdD 16518 1 12 16 21 128 14 22 27 32 0.8%

China cCdD 84653 6 15 20 25 4640 11 24 30 36 5.5%

China_Hubei cCdD 68135 7 16 21 26 4512 11 24 30 36 6.6%

Korea_South cCdD 12535 33 40 44 48 281 39 63 73 84 2.2%

Italy cCdD 238833 51 63 77 92 34675 54 67 80 94 14.5%

Norway cCdD 8772 51 65 71 78 248 66 76 84 93 2.8%

Malaysia cCdD 8590 53 69 78 87 121 59 68 77 86 1.4%

Switzerland cCdD 31332 54 64 72 80 1956 63 74 84 95 6.2%

Greece cCdD 3302 54 68 74 81 190 60 70 82 94 5.8%

Austria cCdD 17408 56 64 69 75 693 64 76 86 96 4.0%

Luxembourg cCdD 4133 56 65 71 77 110 63 76 82 88 2.7%

Thailand cCdD 3156 56 66 72 78 58 66 76 81 87 1.8%

Australia cCdD 7521 57 65 69 74 103 67 74 79 84 1.4%

Spain cCdD 246752 57 68 77 87 28325 60 70 80 90 11.5%

Germany cCdD 192480 57 69 76 84 8914 68 86 94 103 4.6%

Czechia cCdD 10650 58 69 76 84 339 67 76 84 93 3.2%

Iran cCdD 209970 58 69 78 88 9863 49 69 85 101 4.7%

France cCdD 191730 58 70 80 90 29652 66 77 85 93 15.5%

Finland cCdD 7155 59 77 94 112 327 82 91 99 107 4.6%

Netherlands cCdD 49722 59 79 87 96 6095 63 74 88 102 12.3%

Israel cCdD 21512 61 71 80 90 308 70 82 89 96 1.4%

Portugal cCdD 39737 61 73 84 95 1540 65 81 92 104 3.9%

Belgium cCdD 60810 61 79 88 97 9713 71 82 89 97 16.0%

Denmark cCdD 12561 63 74 87 101 603 64 75 89 103 4.8%

Romania cCdD 24505 64 82 102 122 1539 69 102 111 121 6.3%

United_Kingdom cCdD 306210 65 85 102 120 42927 69 82 95 109 14.0%

Canada cCdD 103767 67 91 109 128 8512 80 102 117 133 8.2%

Ecuador cCdD 51643 68 81 92 104 4274 94 105 114 123 8.3%

Hungary cCdD 4107 69 83 94 105 573 75 89 101 113 14.0%

Turkey cCdD 190165 69 83 92 101 5001 71 88 97 107 2.6%

Serbia cCdD 13092 71 84 92 101 263 66 89 99 109 2.0%

Algeria cCdD 12076 71 117 97 77 861 68 77 82 88 7.1%

Ireland cCdD 25391 72 83 90 98 1720 74 88 95 103 6.8%

Japan cCdD 17879 73 84 90 97 965 81 97 112 127 5.4%

Morocco cCdD 10344 74 89 103 118 214 65 75 81 87 2.1%

Sweden cCdD 60837 81 146 130 115 5161 72 89 109 130 8.5%

United_Arab_Emirates cCdD 45683 86 120 133 146 305 90 104 109 115 0.7%

Tajikistan cCdD 5567 110 120 127 134 52 103 111 115 120 0.9%

Diamond_Princess cCd= 712 18 25 28 32 13 27 35 31 27 1.8%

US c=dD 2347022 60 67 - - 121228 70 85 104 123 5.2%

Poland c=dD 32527 66 140 - - 1375 73 93 106 119 4.2%

Congo_Kinshasa c=dD 6027 113 132 - - 135 109 149 133 117 2.2%

Bosnia_and_Herzegovina ==dD 3409 64 74 - - 172 70 108 91 75 5.0%

Dominican_Republic ==dD 26355 100 125 - - 675 67 83 98 114 2.6%

Indonesia ==dD 44724 114 124 - - 2535 78 148 120 92 5.7%

Cameroon ==dD 11331 116 135 - - 313 87 107 99 91 2.8%

Table 1:  Classification of Selected Locations (LOWESS smoothing SMO5 used to find peaks).
KEY: ‘c’ means New Cases peaked, ‘C’ means at least halfway down this peak, ‘d’, ‘D’ are same 
for New Deaths.  We also give Day of Peak, Day Halfway Up, and Day Halfway Down. Day 
Peak Confirmed is defined as (Day of Peak +  Day Halfway Down)/2.
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Philippines ==dD 29997 122 133 - - 1186 69 82 100 118 4.0%

Cote_d_Ivoire ==dD 7021 137 112 - - 58 85 148 119 91 0.8%

Belarus c=d= 59487 86 115 - - 357 81 148 - - 0.6%

Russia c=d= 598878 92 109 - - 8349 103 132 - - 1.4%

Kuwait c=d= 41033 104 117 - - 334 106 130 - - 0.8%

Qatar c=d= 89579 104 129 - - 99 122 148 - - 0.1%

Sudan c=d= 8889 105 123 - - 548 120 130 - - 6.2%

Afghanistan c=d= 29481 113 134 - - 618 129 142 - - 2.1%

Armenia c=d= 21006 118 142 - - 372 124 147 - - 1.8%

Haiti c=d= 5324 121 134 - - 89 123 145 - - 1.7%

Ethiopia c=d= 4848 128 147 - - 75 133 141 - - 1.5%

North_Macedonia c=d= 5311 131 147 - - 251 137 148 - - 4.7%

Peru c=== 260810 101 129 - - 7820 110 55 - - 3.0%

Chile c=== 250767 116 141 - - 4035 130 147 - - 1.6%

Egypt c=== 58141 122 148 - - 2124 136 101 - - 3.7%

Pakistan c=== 188926 128 145 - - 3417 128 54 - - 1.8%

WholeWorld ==d= 10583998 63 69 - - 609543 65 82 - - 5.8%

Ukraine ==d= 36643 86 103 - - 1045 84 114 - - 2.9%

Senegal ==d= 5705 95 147 - - 89 138 146 - - 1.6%

Bahrain ==d= 21513 110 116 - - 67 136 148 - - 0.3%

El_Salvador ==d= 4586 111 126 - - 113 136 148 - - 2.5%

Kazakhstan ==d= 17537 114 126 - - 134 138 148 - - 0.8%

India ==d= 417196 123 16 - - 14476 123 146 - - 3.5%

Bangladesh ==d= 108913 123 61 - - 1545 121 147 - - 1.4%

Nigeria ==d= 19649 123 73 - - 533 100 149 - - 2.7%

Guatemala ==d= 13090 124 64 - - 582 129 139 - - 4.4%

Kenya ==d= 4515 124 73 - - 128 105 147 - - 2.8%

Oman ==d= 29434 126 90 - - 140 126 149 - - 0.5%

South_Africa ==d= 94537 131 64 - - 2102 127 149 - - 2.2%

Argentina ==d= 42354 131 96 - - 1078 127 148 - - 2.5%

Mauritania ==d= 2823 135 66 - - 114 127 139 - - 4.0%

Bulgaria ==== 3856 88 148 - - 198 73 147 - - 5.1%

Ghana ==== 13588 100 107 - - 83 141 148 - - 0.6%

Saudi_Arabia ==== 151974 111 118 - - 1223 129 89 - - 0.8%

Mexico ==== 177175 116 40 - - 21512 119 54 - - 12.1%

Brazil ==== 1058432 117 30 - - 49624 104 146 - - 4.7%

Bolivia ==== 23865 124 50 - - 771 126 87 - - 3.2%

Azerbaijan ==== 12529 127 77 - - 152 128 147 - - 1.2%

Panama ==== 25162 128 95 - - 507 76 147 - - 2.0%

Moldova ==== 13707 128 117 - - 462 100 147 - - 3.4%

Colombia ==== 66449 130 37 - - 2274 131 107 - - 3.4%

Iraq ==== 30056 134 72 - - 1054 139 66 - - 3.5%

Honduras ==== 12383 138 125 - - 378 108 140 - - 3.1%

Canada_Quebec cCdD 54884 68 102 114 126 5424 81 105 120 135 9.9%

Canada_Ontario cCdD 35657 70 88 113 138 2676 79 100 109 118 7.5%

Canada_Alberta cCdD 7781 82 93 98 103 153 70 100 105 111 2.0%

Italy_Marche cCdD 6775 48 59 70 82 994 55 67 75 83 14.7%

Italy_Lombardia cCdD 93173 48 61 74 88 16579 53 65 75 86 17.8%

Italy_Veneto cCdD 19250 51 64 77 90 2004 58 71 92 114 10.4%

Italy_Friuli_Venezia_Giulia cCdD 3305 52 64 74 84 344 54 69 84 100 10.4%

Italy_P.A._Trento_P_A_Trento cCd= 4465 52 74 84 95 466 59 69 80 92 10.4%

Italy_Liguria cCdD 9939 53 65 83 102 1553 55 67 83 100 15.6%

Italy_Toscana cCdD 10217 53 66 77 89 1100 58 81 91 102 10.8%

Italy_Abruzzo cCdD 3282 54 64 78 92 460 58 69 84 99 14.0%

Italy_Puglia cCdD 4529 54 67 79 92 542 62 73 84 96 12.0%

Italy_Lazio cCdD 8033 54 66 78 91 832 58 99 113 128 10.4%

Italy_Piemonte cCdD 31254 55 82 91 101 4059 61 83 92 101 13.0%

Italy_Sicilia cCdD 3073 56 64 73 82 280 60 68 79 91 9.1%

Italy_Campania cCdD 4634 57 70 76 82 431 58 68 80 92 9.3%

US_Washington_King cCdD 9366 56 75 89 104 604 57 74 89 105 6.4%

US_Washington_Snohomish cCdD 3329 56 68 75 83 164 62 75 83 92 4.9%

US_New_York_Westchester cCdD 34581 58 67 81 96 1416 72 79 89 99 4.1%
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US_California_Santa_Clara cCdD 3727 59 69 78 88 154 62 87 96 105 4.1%

US_New_York_NYC cCdD 213056 61 78 88 98 22343 67 77 84 92 10.5%

US_New_York_Nassau cCdD 41544 63 76 84 92 2179 72 79 87 96 5.2%

US_New_York_Rockland cCdD 13529 63 73 84 95 667 71 79 89 99 4.9%

US_Louisiana_Orleans cCdD 7571 64 72 76 80 529 62 79 89 99 7.0%

US_Michigan_Oakland cCdD 11791 64 75 82 90 1081 68 81 95 110 9.2%

US_Michigan_Wayne cCdD 22245 64 73 80 88 2690 70 91 98 105 12.1%

US_Missouri_St._Louis_St_Louis cCdD 5941 64 75 99 123 555 76 95 107 119 9.3%

US_Indiana_Marion cCdD 10977 65 102 115 128 669 73 98 113 129 6.1%

US_New_Jersey_Bergen cCdD 19069 65 74 84 94 1706 71 82 94 107 8.9%

US_New_Jersey_Monmouth cCdD 8998 65 75 86 98 700 71 85 107 130 7.8%

US_New_Jersey_Ocean cCdD 9466 65 75 90 105 860 72 98 109 121 9.1%

US_New_York_Orange cCdD 10666 65 77 88 99 473 70 78 91 105 4.4%

US_New_York_Suffolk cCdD 41056 65 75 84 94 1970 71 80 96 113 4.8%

US_Connecticut_Fairfield cCdD 16522 66 88 96 105 1367 75 88 99 111 8.3%

US_Louisiana_Jefferson cCdD 8888 66 74 78 82 479 66 81 89 98 5.4%

US_Michigan_Macomb cCdD 7175 66 75 85 96 898 72 83 93 103 12.5%

US_New_Jersey_Essex cCdD 18592 66 78 89 100 1765 71 86 96 107 9.5%

US_New_Jersey_Morris cCdD 6727 66 76 86 96 642 71 82 96 111 9.5%

US_New_York_Dutchess cCdD 4150 66 75 87 99 151 102 109 112 115 3.6%

US_Pennsylvania_Northampton cCdD 3327 66 75 92 109 255 93 103 108 113 7.7%

US_Louisiana_East_Baton_Rouge cCdD 4514 67 76 82 88 265 73 94 106 118 5.9%

US_New_Jersey_Hudson cCdD 19316 67 78 91 105 1308 78 86 91 96 6.8%

US_New_Jersey_Passaic cCdD 16794 67 91 98 105 1019 80 96 103 110 6.1%

US_New_York_Erie cCdD 7073 67 99 116 133 632 78 103 118 133 8.9%

US_New_York_Monroe cCdD 3540 67 117 126 136 259 71 93 115 138 7.3%

US_Pennsylvania_Lehigh cCdD 4109 67 75 84 93 281 93 118 123 128 6.8%

US_Pennsylvania_Montgomery cCdD 8159 67 79 107 135 787 83 102 107 112 9.6%

US_New_Jersey_Middlesex cCdD 16640 68 78 92 106 1104 73 100 108 116 6.6%

US_New_Jersey_Somerset cCdD 4818 68 79 92 105 441 74 90 100 110 9.2%

US_New_Jersey_Union cCdD 16341 68 82 90 98 1139 75 91 101 112 7.0%

US_Pennsylvania_Philadelphia cCdD 25335 68 94 105 116 1564 77 103 114 126 6.2%

US_Colorado_Arapahoe cCdD 4993 69 97 114 131 342 82 114 107 101 6.8%

US_Massachusetts_Hampden cCdD 6620 69 93 107 121 649 77 91 100 110 9.8%

US_Massachusetts_Norfolk cCdD 9042 69 91 99 108 919 81 93 101 110 10.2%

US_Illinois_Will cCdD 6433 70 103 116 130 310 73 80 99 119 4.8%

US_Pennsylvania_Delaware cCdD 7065 70 82 102 123 637 91 103 108 113 9.0%

US_Delaware_New_Castle cCdD 4697 71 122 129 137 239 84 115 123 131 5.1%

US_District_of_Columbia cCdD 10094 71 103 116 130 537 81 96 110 124 5.3%

US_Indiana_Lake cCdD 4489 71 98 119 140 238 77 102 121 141 5.3%

US_Massachusetts_Suffolk cCdD 19601 71 91 98 106 976 82 95 102 110 5.0%

US_New_Jersey_Burlington cCdD 5056 71 96 106 116 372 84 102 111 121 7.4%

US_Pennsylvania_Bucks cCdD 5580 71 94 107 120 555 86 102 110 118 9.9%

US_Connecticut_New_Haven cCdD 12225 72 84 98 113 1065 77 91 107 123 8.7%

US_New_Jersey_Mercer cCdD 7560 72 99 111 123 530 78 106 114 122 7.0%

US_Colorado_Adams cCdD 3941 73 102 120 138 154 72 91 115 140 3.9%

US_Colorado_Denver cCdD 6700 73 98 116 134 369 77 114 119 125 5.5%

US_Massachusetts_Essex cCdD 15885 73 94 105 117 1081 81 98 110 122 6.8%

US_Massachusetts_Middlesex cCdD 23647 73 90 101 112 1812 83 97 106 116 7.7%

US_Massachusetts_Plymouth cCdD 8604 73 94 103 113 647 83 97 107 118 7.5%

US_New_Jersey_Camden cCdD 7163 73 101 113 125 421 80 107 124 142 5.9%

US_Connecticut_Hartford cCdD 11443 74 87 106 125 1352 80 91 105 119 11.8%

US_Pennsylvania_Berks cCdD 4444 74 84 96 109 345 84 117 105 94 7.8%

US_Illinois_Cook cCdD 87784 75 101 115 129 4439 77 109 123 138 5.1%

US_Massachusetts_Worcester cCdD 12192 76 98 111 124 905 88 110 121 132 7.4%

US_South_Dakota_Minnehaha cCdD 3537 77 85 99 113 55 96 106 111 117 1.6%

US_Maryland_Montgomery cCdD 14204 78 118 129 141 725 85 98 114 131 5.1%

US_Maryland_Prince_Georges_Prince_George_s cCdD 18080 78 102 119 136 661 83 100 119 139 3.7%

US_Maryland_Baltimore_City cCdD 7148 79 123 133 143 319 82 103 120 138 4.5%

US_Delaware_Sussex cCdD 4509 81 95 107 119 176 82 109 115 121 3.9%

US_Kentucky_Jefferson cCdD 3651 82 133 118 103 185 74 84 94 104 5.1%

US_Michigan_Michigan_Department_Corrections_ cCdD 4097 84 118 124 130 68 80 92 99 107 1.7%

US_Illinois_DuPage cCdD 8736 87 114 121 129 455 80 103 120 137 5.2%

US_Michigan_Kent cCdD 4628 87 98 114 130 128 82 131 106 82 2.8%
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US_Virginia_Fairfax cCdD 13579 87 124 131 139 445 89 99 115 131 3.3%

US_Virginia_Prince_William cCdD 6962 90 123 130 138 134 90 109 121 133 1.9%

US_Iowa_Polk cCdD 5582 93 103 121 140 168 93 123 132 142 3.0%

US_Minnesota_Hennepin cCdD 10988 99 119 129 140 751 87 103 119 136 6.8%

US_Virginia_Loudoun cCdD 3632 112 125 134 143 84 99 110 114 119 2.3%

US_Georgia_Fulton cCd= 5885 64 80 96 113 304 70 126 - - 5.2%

US_Illinois_Lake cCd= 9404 77 108 119 130 405 77 131 - - 4.3%

US_Massachusetts_Bristol cCd= 8081 84 96 110 125 548 81 102 - - 6.8%

US_New_Mexico_McKinley cCd= 3155 84 100 121 142 161 101 111 - - 5.1%

US_Illinois_Kane cCd= 7457 96 112 120 129 254 98 118 - - 3.4%

US_Georgia_Cobb c=dD 4134 67 104 - - 234 70 127 99 71 5.7%

US_Pennsylvania_Lancaster c=dD 4106 69 88 - - 350 81 92 102 112 8.5%

US_Alabama_Mobile c=dD 3052 72 148 - - 132 82 103 109 116 4.3%

US_Pennsylvania_Chester c=dD 3537 72 99 - - 317 84 106 117 128 9.0%

US_Maryland_Anne_Arundel c=dD 4946 73 129 - - 201 77 95 113 132 4.1%

US_New_Hampshire_Hillsborough c=dD 3145 82 125 - - 224 120 130 136 143 7.1%

US_Wisconsin_Milwaukee c=dD 10406 106 125 - - 373 71 79 98 117 3.6%

US_Washington_Yakima c=dD 6435 108 136 - - 142 74 147 119 91 2.2%

US_Puerto_Rico c=dD 6685 118 136 - - 149 70 80 97 114 2.2%

US_North_Carolina_Durham c=dD 3244 122 142 - - 60 88 97 106 116 1.8%

US_South_Carolina_Greenville c=dD 3822 131 147 - - 75 91 97 100 104 2.0%

US_Florida_Broward ==dD 10920 70 78 - - 377 70 90 102 114 3.5%

US_Nevada_Clark ==dD 10093 71 74 - - 400 69 82 103 124 4.0%

US_California_Alameda ==dD 4999 76 130 - - 121 74 83 101 120 2.4%

US_Tennessee_Davidson ==dD 7466 87 97 - - 98 75 139 109 80 1.3%

US_Ohio_Hamilton ==dD 3836 93 102 - - 188 77 130 134 138 4.9%

US_California_Tulare ==dD 3211 100 108 - - 116 86 115 108 101 3.6%

US_Georgia_Gwinnett ==dD 6225 100 131 - - 163 78 105 99 93 2.6%

US_Alabama_Jefferson ==dD 2895 118 121 - - 126 83 119 124 130 4.4%

US_Tennessee_Shelby ==dD 7796 118 99 - - 166 72 140 114 89 2.1%

US_California_San_Bernardino ==dD 9241 123 91 - - 234 78 114 125 136 2.5%

US_North_Carolina_Mecklenburg ==dD 8377 124 148 - - 143 79 132 118 105 1.7%

US_Florida_Collier ==dD 3110 126 75 - - 65 85 116 127 139 2.1%

US_Texas_Fort_Bend ==dD 2915 134 103 - - 50 75 105 108 112 1.7%

US_Arizona_Pima ==dD 5464 136 84 - - 247 82 107 100 93 4.5%

US_Florida_Lee ==dD 3430 136 75 - - 149 86 109 97 86 4.3%

US_Texas_Harris ==dD 22429 136 78 - - 335 75 102 95 89 1.5%

US_Florida_Pinellas ==dD 3491 140 71 - - 129 91 103 108 114 3.7%

US_Florida_Orange ==dD 4803 141 72 - - 51 75 87 91 96 1.1%

US_Florida_Duval ==dD 2876 142 74 - - 62 67 122 99 77 2.2%

US_Ohio_Cuyahoga c=d= 5820 64 120 - - 341 82 137 - - 5.9%

US_Georgia_DeKalb c=d= 5042 68 124 - - 166 84 144 - - 3.3%

US_Maryland_Baltimore c=d= 7635 71 115 - - 458 89 116 - - 6.0%

US_Ohio_Franklin c=d= 8029 87 103 - - 370 98 116 - - 4.6%

US_Nebraska_Douglas c=d= 6461 101 128 - - 83 132 139 - - 1.3%

US_Minnesota_Ramsey c=d= 4394 105 121 - - 213 109 139 - - 4.8%

US_Arizona_Navajo c=d= 3166 106 144 - - 97 98 141 - - 3.1%

US_Alabama_Montgomery c=d= 3307 117 141 - - 85 118 140 - - 2.6%

US_California_Kern c=d= 4049 119 149 - - 60 101 129 - - 1.5%

US_California_Imperial c=d= 5270 128 139 - - 68 135 146 - - 1.3%

US_California_San_Diego ==d= 10738 72 109 - - 341 75 109 - - 3.2%

US_California_Los_Angeles ==d= 83831 88 132 - - 3171 77 93 - - 3.8%

US_Texas_Dallas ==d= 16645 101 108 - - 324 80 116 - - 1.9%

US_Texas_Tarrant ==d= 8759 103 110 - - 211 76 108 - - 2.4%

US_Texas_El_Paso ==d= 4427 105 136 - - 122 101 128 - - 2.8%

US_California_Orange ==d= 10046 109 75 - - 273 115 147 - - 2.7%

US_Arizona_Yuma ==d= 4388 130 69 - - 69 130 147 - - 1.6%

US_Florida_Palm_Beach ==d= 10375 130 115 - - 476 69 143 - - 4.6%

US_California_Fresno ==d= 3365 131 112 - - 70 116 149 - - 2.1%

US_California_Riverside ==d= 13409 131 86 - - 431 80 97 - - 3.2%

US_Texas_Travis ==d= 5802 137 103 - - 112 81 98 - - 1.9%

US_Arizona_Maricopa ==d= 29446 139 108 - - 663 98 109 - - 2.3%

US_Florida_Hillsborough ==d= 5425 140 73 - - 119 103 116 - - 2.2%

US_Texas_Bexar ==d= 6292 140 79 - - 97 71 82 - - 1.5%
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Cases China cC 84572 85924 0.00 132 14 20 98422 103778 16.4 22.7 BL

Cases China_Hubei cC 68135 69197 0.51 98 14 21 74259 89953 9.0 32.0 BL

Cases China_non_Hubei cC 16437 16376 5.21 106 14 16 15445 17073 6.0 3.9 PD

Cases Thailand cC 3148 3198 0.00 82 70 72 3081 3468 2.1 10.2 BL

Cases Japan cC 17780 18064 0.00 57 93 90 19378 22520 9.0 26.7 BL

Cases Australia cC 7474 7172 6.78 85 66 69 7869 8665 5.3 15.9 BL

Cases Germany cC 191272 194331 0.00 83 68 76 208464 198918 9.0 4.0 PD

Cases Malaysia cC 8572 8891 2.10 46 106 78 7125 7600 16.9 11.3 PD

Cases Diamond_Princess cC 712 719 0.57 25 127 28 723 1041 1.5 46.2 BL

Cases France cC 191117 194075 0.14 73 79 80 180052 187814 5.8 1.7 PD

Cases Iran cC 204952 281110 9.42 12 138 78 246090 120251 20.1 41.3 BL

Cases Italy cC 238499 241872 0.39 72 80 77 198256 203093 16.9 14.8 PD

Cases Italy_Lombardia cC 92968 94454 0.00 70 64 74 87585 77867 5.8 16.2 BL

Cases Italy_Veneto cC 19245 19552 0.00 80 72 77 17445 18780 9.4 2.4 PD

Cases United_Kingdom cC 304331 320393 0.04 52 100 102 264224 282220 13.2 7.3 PD

Cases Canada cC 103078 112170 1.50 48 104 109 93302 111805 9.5 8.5 PD

Cases Italy_Liguria cC 9927 10085 0.00 69 62 83 8985 7246 9.5 27.0 BL

Cases Spain cC 246272 250211 0.00 76 76 77 268408 240035 9.0 2.5 PD

Cases Italy_Piemonte cC 31241 31740 0.00 69 83 91 27277 46594 12.7 49.1 BL

Cases Canada_Ontario cC 35217 38549 1.10 30 122 112 31876 31105 9.5 11.7 BL

Cases Italy_Campania cC 4617 4809 1.46 69 80 76 4061 6241 12.0 35.2 BL

Cases Italy_Marche cC 6768 6876 0.00 84 61 70 6036 5874 10.8 13.2 BL

Cases Italy_Toscana cC 10210 10373 0.00 84 68 77 9189 10362 10.0 1.5 PD

Cases Norway cC 8745 8884 0.00 85 67 71 7915 9957 9.5 13.9 BL

Cases Switzerland cC 31292 31792 0.00 79 71 72 26465 31956 15.4 2.1 PD

Cases Austria cC 17341 16613 6.60 82 69 69 15055 18068 13.2 4.2 PD

Cases Netherlands cC 49593 48376 4.04 71 81 87 44889 62504 9.5 26.0 BL

Cases US_Washington_King cC 9211 9125 2.36 72 79 89 8337 9138 9.5 0.8 PD

Cases Belgium cC 60550 61421 0.26 67 85 88 54807 71749 9.5 18.5 BL

Cases Italy_Friuli_Venezia_Giulia cC 3305 3357 0.00 92 60 74 3235 3270 2.1 1.1 PD

Cases Italy_Lazio cC 8017 8145 0.00 74 64 78 7853 6760 2.0 15.7 BL

Cases US_California_Santa_Clara cC 3547 3118 9.89 42 110 78 2555 2375 28.0 33.0 BL

Cases Algeria cC 11771 14568 0.00 33 119 97 12403 19598 5.4 66.5 BL

Cases Italy_Sicilia cC 3072 3464 0.79 71 81 73 2806 2859 8.7 6.9 PD

Cases Finland cC 7143 7509 3.30 61 91 94 6201 6561 13.2 8.1 PD

Cases Italy_Puglia cC 4527 4599 0.00 82 69 79 4103 4275 9.4 5.6 PD

Cases US_New_York_Westchester cC 34521 35052 0.14 63 89 81 28972 22523 16.1 34.8 BL

Cases US_Washington_Snohomish cC 3237 3321 2.87 51 101 75 2690 2965 16.9 8.4 PD

Cases Denmark cC 12391 12587 0.87 59 93 87 10300 11813 16.9 4.7 PD

Cases Ireland cC 25379 25630 5.04 49 103 90 24674 30746 2.8 21.1 BL

Cases US_New_York_NYC cC 212446 215935 0.43 62 90 88 176049 237634 17.1 11.9 PD

Cases Italy_Abruzzo cC 3281 3319 0.54 71 81 78 2848 2557 13.2 22.1 BL

Cases Italy_P.A._Trento_P_A_Trento cC 4463 4534 0.00 72 80 84 4039 6241 9.5 39.8 BL

Cases Romania cC 24045 22183 7.07 52 99 102 18278 18062 24.0 24.9 BL

Cases US_New_York_Nassau cC 41479 42079 0.21 72 79 84 38790 46547 6.5 12.2 BL

Cases US_Illinois_Cook cC 87177 99270 6.23 41 110 115 85350 109201 2.1 25.3 BL

Cases US_Massachusetts_Middlesex cC 23574 23978 0.24 63 81 101 25692 27036 9.0 14.7 BL

Cases Canada_Alberta cC 7704 7827 0.00 45 107 98 6404 10720 16.9 39.1 BL

Cases Hungary cC 4094 4241 1.41 53 99 94 4915 4074 20.1 0.5 PD

Cases Serbia cC 12894 11884 6.82 59 76 92 13100 13265 1.6 2.9 BL

Cases US_Massachusetts_Norfolk cC 8994 9137 0.00 58 93 99 10799 12237 20.1 36.1 BL

Cases US_Massachusetts_Suffolk cC 19551 19920 8.39 62 88 98 19141 25935 2.1 32.7 BL

Cases US_New_Jersey_Bergen cC 19010 19294 0.23 63 89 84 16374 16459 13.9 13.4 PD

Cases Luxembourg cC 4120 4185 0.00 79 73 71 3732 4308 9.4 4.6 PD

Table 2:  Comparing Best Line (BL) and Peak Detection (PD) Prediction of Plateau N Value.
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Cases US_Louisiana_Orleans cC 7518 8193 0.00 51 101 76 6804 8948 9.5 19.0 BL

Cases US_New_York_Suffolk cC 40972 41422 0.65 69 82 84 39733 38607 3.0 5.8 BL

Cases US_Pennsylvania_Montgomery cC 8103 9371 8.07 29 123 107 7689 4930 5.1 39.2 BL

Cases Canada_Quebec cC 54766 57803 1.81 44 108 114 48524 84353 11.4 54.0 BL

Cases US_Colorado_Denver cC 6630 7470 0.00 44 107 116 6244 7883 5.8 18.9 BL

Cases US_Connecticut_Fairfield cC 16475 16793 0.59 64 78 96 14391 21768 12.6 32.1 BL

Cases US_Georgia_Fulton cC 5496 5609 3.48 28 124 96 4568 4009 16.9 27.1 BL

Cases US_Louisiana_Jefferson cC 8681 9041 8.62 39 107 78 7536 8298 13.2 4.4 PD

Cases US_Michigan_Oakland cC 11685 12085 6.99 40 112 82 9713 9916 16.9 15.1 PD

Cases US_Colorado_Arapahoe cC 4941 5390 0.99 46 106 114 4654 6252 5.8 26.5 BL

Cases US_New_York_Rockland cC 13504 13735 0.33 54 98 84 11889 12762 12.0 5.5 PD

Cases Turkey cC 187685 167702 8.36 66 86 92 136703 176867 27.2 5.8 PD

Cases US_District_of_Columbia cC 10020 11001 0.68 44 106 116 9439 13925 5.8 39.0 BL

Cases US_Maryland_Montgomery cC 14079 18786 6.92 32 120 129 20025 23621 42.2 67.8 BL

Cases US_Michigan_Wayne cC 22139 22493 0.00 53 99 80 18403 18381 16.9 17.0 BL

Cases US_Minnesota_Hennepin cC 10830 11793 7.00 18 134 129 11003 15964 1.6 47.4 BL

Cases US_New_Jersey_Essex cC 18551 18870 0.25 70 73 89 18718 16187 0.9 12.7 BL

Cases US_New_Jersey_Hudson cC 19280 19656 2.15 60 92 91 17451 15918 9.5 17.4 BL

Cases US_New_Jersey_Middlesex cC 16605 16851 0.31 59 93 92 14152 12224 14.8 26.4 BL

Cases US_New_Jersey_Monmouth cC 8942 9745 0.00 36 116 86 8754 6806 2.1 23.9 BL

Cases US_New_York_Monroe cC 3498 3796 0.54 25 119 126 4329 6254 23.8 78.8 BL

Cases US_New_York_Orange cC 10648 10741 0.84 69 83 88 9244 10859 13.2 2.0 PD

Cases US_Delaware_New_Castle cC 4647 4771 7.21 31 121 129 4206 8788 9.5 89.1 BL

Cases US_Illinois_DuPage cC 8682 9085 7.35 16 135 121 8666 15061 0.2 73.5 BL

Cases US_New_Jersey_Union cC 16322 16635 0.26 64 88 90 15980 18370 2.1 12.5 BL

Cases US_New_York_Dutchess cC 4138 4204 0.00 52 100 87 3439 3147 16.9 23.9 BL

Cases US_New_York_Erie cC 7004 8111 2.09 31 121 115 7633 8722 9.0 24.5 BL

Cases US_Pennsylvania_Philadelphia cC 24841 26366 0.34 47 105 105 21402 32502 13.8 30.8 BL

Cases US_Virginia_Fairfax cC 13419 19779 8.83 43 109 131 18095 25864 34.8 92.7 BL

Cases US_Connecticut_Hartford cC 11405 12329 1.31 51 91 106 13229 8807 16.0 22.8 BL

Cases US_Illinois_Lake cC 9326 9907 8.68 21 127 119 11542 13876 23.8 48.8 BL

Cases US_Indiana_Marion cC 10945 11883 4.21 35 117 115 9906 16540 9.5 51.1 BL

Cases US_Massachusetts_Essex cC 15829 16460 3.10 54 97 105 14073 19356 11.1 22.3 BL

Cases US_New_Jersey_Mercer cC 7541 7883 1.27 54 80 111 8178 10786 8.4 43.0 BL

Cases US_New_Jersey_Morris cC 6699 6803 0.39 75 74 86 6806 5912 1.6 11.7 BL

Cases US_New_Jersey_Passaic cC 16769 16995 0.46 58 94 98 15178 25589 9.5 52.6 BL

Cases US_New_Jersey_Somerset cC 4813 4889 0.00 68 83 92 5328 3917 10.7 18.6 BL

Cases US_Pennsylvania_Delaware cC 7038 7371 0.86 51 87 102 6110 4634 13.2 34.2 BL

Cases US_Connecticut_New_Haven cC 12185 12571 1.77 60 87 99 12656 11180 3.9 8.2 BL

Cases US_Massachusetts_Worcester cC 12130 12332 0.17 38 102 111 10979 14591 9.5 20.3 BL

Cases US_Michigan_Macomb cC 7152 7266 0.00 58 94 85 6209 5887 13.2 17.7 BL

Cases US_New_Jersey_Burlington cC 5023 5214 1.74 53 99 106 4361 6515 13.2 29.7 BL

Cases US_New_Jersey_Camden cC 7135 7626 1.69 49 103 113 6458 10318 9.5 44.6 BL

Cases US_New_Jersey_Ocean cC 9425 10118 1.56 46 104 90 8182 6398 13.2 32.1 BL

Cases US_Pennsylvania_Bucks cC 5547 5823 3.67 58 94 106 5020 6333 9.5 14.2 BL

Cases US_Colorado_Adams cC 3909 4733 2.10 32 120 120 3826 4841 2.1 23.8 BL

Cases US_Kentucky_Jefferson cC 3582 3561 5.13 18 130 118 3109 7317 13.2 104.3 BL

Cases US_Maryland_Baltimore_City cC 7053 7863 0.22 28 121 133 6384 12786 9.5 81.3 BL

Cases US_Massachusetts_Plymouth cC 8583 8731 0.25 54 96 103 7768 11308 9.5 31.7 BL

Cases US_Michigan_Kent cC 4590 5000 0.40 36 116 114 4154 4044 9.5 11.9 BL

Cases US_Missouri_St._Louis_St_Louis cC 5850 6505 3.68 32 120 98 5727 3098 2.1 47.0 BL

Cases US_Illinois_Will cC 6367 6845 1.37 37 115 117 5763 8538 9.5 34.1 BL

Cases US_Louisiana_East_Baton_Rouge cC 4374 5080 8.13 17 135 82 5575 2209 27.5 49.5 BL

Cases US_Massachusetts_Bristol cC 8035 8731 8.56 32 120 110 8505 8372 5.8 4.2 PD

Cases US_Pennsylvania_Lehigh cC 4085 4134 3.26 44 108 83 3395 2778 16.9 32.0 BL

Cases US_Pennsylvania_Northampton cC 3309 3415 1.99 45 107 92 2750 1886 16.9 43.0 BL

Cases US_Delaware_Sussex cC 4495 4554 0.65 42 107 106 5064 4433 12.7 1.4 PD

Cases US_Illinois_Kane cC 7399 7503 3.96 23 129 121 7790 10481 5.3 41.7 BL

Cases US_Massachusetts_Hampden cC 6598 6703 0.00 45 107 107 5728 8260 13.2 25.2 BL

Cases US_Pennsylvania_Berks cC 4407 4615 0.48 43 109 96 3988 3653 9.5 17.1 BL

Cases US_Iowa_Polk cC 5498 6384 2.84 27 124 121 5245 4349 4.6 20.9 BL

Cases US_Indiana_Lake cC 4400 5283 0.00 35 117 119 4307 4824 2.1 9.6 BL

Cases US_South_Dakota_Minnehaha cC 3523 3579 0.00 44 108 99 3709 2712 5.3 23.0 BL

Deaths China dD 4639 4713 0.00 113 22 30 5398 6121 16.4 31.9 BL

Deaths China_Hubei dD 4512 4565 0.63 53 21 30 4417 5942 2.1 31.7 BL

Deaths China_non_Hubei dD 127 128 4.44 122 28 27 133 163 4.7 28.3 BL
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Deaths Iran dD 9623 8550 9.89 59 92 85 6932 7940 28.0 17.5 PD

Deaths Italy dD 34634 35242 0.41 71 69 80 29392 29159 15.1 15.8 BL

Deaths Korea_South dD 280 284 0.00 85 65 74 274 356 2.1 27.1 BL

Deaths Italy_Lombardia dD 16570 16819 0.18 83 60 75 18671 14822 12.7 10.5 PD

Deaths US dD 119977 126194 1.55 43 109 104 102469 94756 14.6 21.0 BL

Deaths Italy_Veneto dD 2002 2033 0.00 61 91 92 1707 1345 14.7 32.8 BL

Deaths US_Washington_King dD 600 611 1.05 60 92 90 565 568 5.8 5.3 PD

Deaths France dD 29574 30046 0.00 67 85 85 26769 29697 9.5 0.4 PD

Deaths Spain dD 28323 28189 3.81 60 83 80 23001 25731 18.8 9.2 PD

Deaths Italy_Piemonte dD 4051 4102 2.95 69 83 92 3966 5172 2.1 27.7 BL

Deaths Italy_Marche dD 994 1005 0.95 76 73 74 1030 984 3.6 1.0 PD

Deaths Japan dD 955 971 0.38 48 104 112 970 1100 1.6 15.2 BL

Deaths Italy_Liguria dD 1549 1578 1.03 59 93 83 1344 1016 13.2 34.4 BL

Deaths Italy_Lazio dD 827 911 6.11 39 113 114 748 1258 9.6 52.1 BL

Deaths Switzerland dD 1956 1987 0.00 67 81 84 1752 1929 10.4 1.4 PD

Deaths Italy_Friuli_Venezia_Giulia dD 344 347 0.29 73 73 85 362 326 5.2 5.2 PD

Deaths Netherlands dD 6090 6171 0.45 65 87 88 5287 4816 13.2 20.9 BL

Deaths United_Kingdom dD 42632 40774 6.54 58 94 95 35288 35720 17.2 16.2 PD

Deaths Germany dD 8895 9019 0.30 67 85 94 8708 11351 2.1 27.6 BL

Deaths Italy_Puglia dD 540 548 0.00 59 91 84 488 418 9.6 22.6 BL

Deaths Philippines dD 1169 1139 5.99 53 82 100 1273 818 8.9 30.0 BL

Deaths US_New_York_NYC dD 22278 22612 0.20 70 82 84 20223 21884 9.2 1.8 PD

Deaths Italy_Toscana dD 1095 1114 0.32 61 91 92 1112 1323 1.6 20.8 BL

Deaths Belgium dD 9696 9801 0.68 59 93 89 8776 10495 9.5 8.2 PD

Deaths Italy_Abruzzo dD 459 463 0.84 42 106 84 381 323 17.0 29.6 BL

Deaths Italy_Campania dD 431 437 0.00 62 88 80 358 345 16.9 20.0 BL

Deaths Italy_P.A._Trento_P_A_Trento dD 466 470 1.20 64 85 80 387 426 17.0 8.6 PD

Deaths Sweden dD 5111 5624 4.14 38 114 109 4626 4534 9.5 11.3 BL

Deaths Canada dD 8482 9249 0.48 49 103 117 8703 10421 2.6 22.9 BL

Deaths Denmark dD 600 609 0.23 63 88 89 491 505 18.2 15.8 PD

Deaths Greece dD 190 195 2.39 59 75 83 173 154 8.9 18.9 BL

Deaths Portugal dD 1530 1564 1.84 58 94 92 1384 1359 9.5 11.2 BL

Deaths US_Louisiana_Orleans dD 529 537 0.00 66 86 89 478 641 9.6 21.2 BL

Deaths Austria dD 690 665 2.52 61 69 86 700 731 1.4 5.9 BL

Deaths Ecuador dD 4223 3971 8.64 35 115 114 4290 4466 1.6 5.8 BL

Deaths Turkey dD 4950 5029 0.00 61 89 97 4751 5469 4.0 10.5 BL

Deaths Italy_Sicilia dD 280 278 1.59 64 88 80 232 209 17.1 25.4 BL

Deaths Malaysia dD 121 117 5.18 67 84 76 105 89 13.2 26.4 BL

Deaths US_New_York_Suffolk dD 1964 1994 1.21 43 109 96 2175 1228 10.7 37.5 BL

Deaths US_Washington_Snohomish dD 163 160 4.20 37 112 82 129 125 20.9 23.3 BL

Deaths Norway dD 244 236 4.54 61 85 85 220 279 9.8 14.3 BL

Deaths US_California_Santa_Clara dD 152 154 0.00 52 100 96 131 209 13.8 37.5 BL

Deaths US_Michigan_Wayne dD 2687 2730 0.20 63 80 97 2246 3609 16.4 34.3 BL

Deaths Poland dD 1356 1223 9.54 51 98 106 1077 1326 20.6 2.2 PD

Deaths US_Connecticut_Fairfield dD 1361 1386 0.53 56 93 99 1483 1296 9.0 4.8 PD

Deaths US_Illinois_Cook dD 4404 5095 0.76 35 117 123 4129 6292 6.2 42.9 BL

Deaths US_Michigan_Oakland dD 1077 1094 0.00 53 99 95 1014 926 5.8 14.0 BL

Deaths US_New_York_Nassau dD 2178 2212 0.00 56 96 87 1832 1794 15.9 17.6 BL

Deaths Australia dD 102 103 0.99 57 93 80 99 114 2.9 11.8 BL

Deaths Canada_Ontario dD 2657 2796 0.08 61 86 109 3092 3416 16.4 28.6 BL

Deaths Ireland dD 1715 1742 0.00 60 88 95 1742 2049 1.6 19.5 BL

Deaths Morocco dD 214 218 1.12 63 80 81 185 225 13.6 5.1 PD

Deaths US_Louisiana_Jefferson dD 477 484 1.10 65 85 90 449 554 5.9 16.1 BL

Deaths US_Michigan_Macomb dD 899 935 1.66 53 99 93 797 872 11.3 3.0 PD

Deaths Canada_Quebec dD 5417 5925 1.06 42 110 120 4903 6798 9.5 25.5 BL

Deaths Dominican_Republic dD 662 757 4.05 21 131 98 623 418 5.9 36.9 BL

Deaths Israel dD 306 310 0.00 65 86 89 344 315 12.4 2.9 PD

Deaths Luxembourg dD 110 112 2.16 57 78 82 107 122 2.7 10.9 BL

Deaths Czechia dD 336 338 2.12 48 104 85 279 293 17.0 12.8 PD

Deaths Hungary dD 570 596 0.66 56 89 100 621 502 8.9 11.9 BL

Deaths US_New_Jersey_Bergen dD 1696 1727 0.49 52 100 94 1597 1391 5.8 18.0 BL

Deaths Finland dD 326 328 3.19 43 107 99 322 385 1.2 18.1 BL

Deaths US_Florida_Broward dD 373 400 1.73 44 108 102 351 361 5.9 3.2 PD

Deaths US_Nevada_Clark dD 398 416 4.93 39 112 102 345 228 13.3 42.7 BL

Deaths US_New_Jersey_Essex dD 1760 1789 0.26 51 101 96 1527 1777 13.2 1.0 PD

Deaths US_New_Jersey_Middlesex dD 1101 1158 0.14 44 106 108 1037 1568 5.8 42.4 BL
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Cases Peru 257,447 478,018 1.3 220,571 85.7 22 19

Deaths Brazil 51,271 97,987 3.6 46,716 91.1 16 42

Cases Belarus 59,023 82,618 5.7 23,595 40.0 22 158

Cases Indonesia 46,845 68,939 5.0 22,094 47.2 8 395

Cases Afghanistan 29,157 45,900 7.4 16,743 57.4 10 215

Cases United_Arab_Emirates 45,303 57,910 6.8 12,607 27.8 31 25

Cases Philippines 30,682 41,752 2.6 11,070 36.1 12 259

Cases Kuwait 40,291 46,889 3.4 6,598 16.4 31 233

Deaths Peru 8,223 14,544 8.8 6,321 76.9 24 144

Cases US_Tennessee_Davidson 7,716 13,730 5.3 6,014 77.9 8 423

Cases Cameroon 12,041 17,830 9.6 5,789 48.1 14 480

Deaths Russia 8,196 13,573 6.6 5,377 65.6 20 151

Cases El_Salvador 4,808 9,177 9.2 4,369 90.9 8 492

Cases Dominican_Republic 27,370 31,447 6.0 4,077 14.9 14 637

Cases US_Washington_Yakima 6,326 10,266 3.4 3,940 62.3 6 167

Cases Sudan 8,698 12,425 2.8 3,727 42.8 20 174

Deaths Bangladesh 1,502 4,870 8.8 3,368 224.2 7 212

Cases Moldova 14,363 17,669 8.5 3,306 23.0 10 508

Cases US_Texas_El_Paso 4,553 7,645 7.6 3,092 67.9 12 285

Cases US_Maryland_Baltimore 7,585 10,177 8.9 2,592 34.2 20 0

Cases US_Maryland_Anne_Arundel 4,916 7,175 0.1 2,259 46.0 6 1

Cases US_Nebraska_Douglas 6,386 8,611 0.0 2,225 34.8 13 0

Cases US_Ohio_Franklin 7,915 9,941 3.3 2,026 25.6 18 97

Cases US_California_Orange 10,595 12,609 9.8 2,014 19.0 16 301

Cases Ukraine 38,056 39,656 9.6 1,600 4.2 19 754

Cases Haiti 5,211 6,480 3.2 1,269 24.4 8 38

Deaths Indonesia 2,500 3,449 7.1 949 38.0 9 16

Cases US_Georgia_Gwinnett 6,407 7,219 8.9 812 12.7 16 169

Cases US_California_San_Diego 11,096 11,875 7.4 779 7.0 23 131

Cases US_Ohio_Cuyahoga 5,734 6,450 7.6 716 12.5 8 184

Deaths Argentina 1,043 1,581 9.7 538 51.6 9 59

Cases US_Georgia_Cobb 3,969 4,488 6.2 519 13.1 28 0

Deaths Ukraine 1,022 1,539 4.3 517 50.6 9 31

Cases US_Puerto_Rico 6,564 7,056 7.2 492 7.5 12 152

Cases US_Pennsylvania_Chester 3,513 3,975 10.0 462 13.2 34 19

Deaths US_California_Los_Angeles 3,137 3,506 2.7 369 11.8 31 25

Cases US_Minnesota_Ramsey 4,352 4,675 7.2 323 7.4 23 34

Deaths Nigeria 525 840 6.2 315 60.0 7 29

Cases US_Wisconsin_Milwaukee 10,355 10,668 5.5 313 3.0 26 89

Deaths Armenia 360 666 6.7 306 85.0 9 19

Deaths US_Florida_Palm_Beach 468 747 7.0 279 59.6 10 14

Deaths US_Arizona_Maricopa 634 776 8.4 142 22.4 29 9

Deaths US_Texas_Dallas 317 434 3.0 117 36.9 32 0

Deaths US_Massachusetts_Bristol 546 663 1.4 117 21.4 26 0

Deaths US_Ohio_Cuyahoga 339 456 3.3 117 34.5 14 1

Deaths US_Maryland_Baltimore 455 543 1.4 88 19.3 34 1

Deaths Sudan 533 615 7.3 82 15.4 10 8

Deaths US_California_Riverside 424 498 1.4 74 17.5 34 0

Deaths US_Texas_El_Paso 120 190 7.2 70 58.3 6 5

Deaths US_Illinois_Kane 252 319 8.1 67 26.6 21 0

Deaths US_Texas_Tarrant 208 274 2.0 66 31.7 18 0

Deaths Kuwait 330 396 3.2 66 20.0 18 1

Deaths US_California_San_Diego 338 397 5.9 59 17.5 36 0

Deaths Bulgaria 207 265 9.8 58 28.0 16 0

Deaths US_Ohio_Franklin 358 408 2.8 50 14.0 17 3

Deaths US_Georgia_DeKalb 165 205 8.5 40 24.2 32 1

Deaths US_Utah_Salt_Lake 102 140 4.0 38 37.3 10 2

Deaths US_Colorado_Adams 153 186 4.0 33 21.6 25 0

Deaths US_Illinois_Lake 401 433 6.5 32 8.0 24 0

Deaths US_New_Jersey_Mercer 524 556 8.3 32 6.1 46 0

Deaths US_California_Kern 60 84 1.5 24 40.0 22 0

Deaths US_Nevada_Clark 400 419 6.2 19 4.8 39 0

Deaths US_Maryland_Anne_Arundel 200 217 1.9 17 8.5 41 0

Deaths US_Virginia_Loudoun 84 100 3.0 16 19.0 6 1

Deaths US_Nebraska_Douglas 80 94 6.0 14 17.5 6 1

Deaths US_Florida_Hillsborough 115 128 9.8 13 11.3 15 3

Deaths Panama 521 529 9.7 8 1.5 17 10

Deaths US_Puerto_Rico 149 156 0.4 7 4.7 44 0

Deaths US_Ohio_Hamilton 187 192 9.6 5 2.7 26 3

Deaths US_South_Dakota_Minnehaha 54 55 2.1 1 1.9 29 0

Table 3:  Forecasts of Plateau N Ordered by Size and Certainty (green shading 

more certain but may involves small increases to plateau so less important).
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Deaths Diamond_Princess 13 12 0.0 -1 -7.7 22 0

Cases US_Texas_Harris 23,047 21,967 9.8 -1,080 -4.7 12 727

Deaths India 14,011 32,783 4.4 18,772 134.0 8 842

Cases Azerbaijan 13,207 30,088 8.4 16,881 127.8 6 1324

Cases Panama 26,752 38,757 8.5 12,005 44.9 7 1553

Cases US_California_Los_Angeles 86,017 97,102 8.8 11,085 12.9 21 1629

Cases Russia 591,465 703,979 7.9 112,514 19.0 36 2025

Deaths WholeWorld 635,463 701,602 1.7 66,139 10.4 39 3482

Cases Egypt 56,809 171,053 5.9 114,244 201.1 9 4947

Cases Saudi_Arabia 161,005 337,073 5.7 176,068 109.4 6 5268

Cases Mexico 185,122 754,786 2.6 569,664 307.7 14 5941

Cases Bangladesh 115,786 267,358 5.8 151,572 130.9 8 9044

Cases Pakistan 185,034 470,553 6.5 285,519 154.3 7 17969

Cases US 2,312,302 2,089,628 9.8 -222,674 -9.6 35 21481

Cases India 440,215 1,363,036 9.8 922,821 209.6 13 35566

Cases WholeWorld 11,806,469 15,823,018 2.7 4,016,549 34.0 11 244799

Cases Iraq 32,676 1 0.0 -32,675 -100.0 - -

Cases Oman 31,076 1 0.0 -31,075 -100.0 - -

Cases Brazil 1,106,470 1 0.0 -1,106,469 -100.0 - -

Cases Argentina 44,931 1 0.0 -44,930 -100.0 - -

Cases Poland 32,227 1 0.0 -32,226 -100.0 - -

Cases Qatar 88,403 1 0.0 -88,402 -100.0 - -

Cases Chile 246,963 1 0.0 -246,962 -100.0 - -

Cases South_Africa 101,590 1 0.0 -101,589 -100.0 - -

Cases Bulgaria 3,984 1 0.0 -3,983 -100.0 - -

Cases Colombia 71,367 1 0.0 -71,366 -100.0 - -

Cases North_Macedonia 5,196 1 0.0 -5,195 -100.0 - -

Cases US_Florida_Broward 11,327 1 0.0 -11,326 -100.0 - -

Cases US_Nevada_Clark 10,774 1 0.0 -10,773 -100.0 - -

Cases Armenia 20,588 1 0.0 -20,587 -100.0 - -

Cases US_California_Alameda 5,007 1 0.0 -5,006 -100.0 - -

Cases US_California_Riverside 13,800 1 0.0 -13,799 -100.0 - -

Cases Senegal 5,970 1 0.0 -5,969 -100.0 - -

Cases US_Texas_Dallas 17,299 1 0.0 -17,298 -100.0 - -

Cases Bolivia 25,493 1 0.0 -25,492 -100.0 - -

Cases Kazakhstan 18,231 1 0.0 -18,230 -100.0 - -

Cases US_Florida_Palm_Beach 10,943 1 0.0 -10,942 -100.0 - -

Cases US_Georgia_DeKalb 4,791 1 0.0 -4,790 -100.0 - -

Cases US_North_Carolina_Mecklenburg 8,956 1 0.0 -8,955 -100.0 - -

Cases US_Arizona_Maricopa 31,650 1 0.0 -31,649 -100.0 - -

Cases US_Florida_Hillsborough 5,973 1 0.0 -5,972 -100.0 - -

Cases US_Texas_Bexar 6,882 1 0.0 -6,881 -100.0 - -

Cases US_Texas_Travis 6,210 1 0.0 -6,209 -100.0 - -

Cases Congo_Kinshasa 5,924 1 0.0 -5,923 -100.0 - -

Cases Honduras 13,356 1 0.0 -13,355 -100.0 - -

Cases US_Texas_Tarrant 8,955 1 0.0 -8,954 -100.0 - -

Cases Guatemala 13,769 1 0.0 -13,768 -100.0 - -

Cases Nigeria 20,919 1 0.0 -20,918 -100.0 - -

Cases US_Arizona_Pima 5,587 1 0.0 -5,586 -100.0 - -

Cases US_Tennessee_Shelby 8,064 1 0.0 -8,063 -100.0 - -

Cases Kenya 4,797 1 0.0 -4,796 -100.0 - -

Cases US_California_San_Bernardino 9,361 1 0.0 -9,360 -100.0 - -

Cases US_Ohio_Hamilton 4,020 1 0.0 -4,019 -100.0 - -

Cases US_California_Kern 3,965 1 0.0 -3,964 -100.0 - -

Cases US_Pennsylvania_Lancaster 4,029 1 0.0 -4,028 -100.0 - -

Deaths Iraq 1,167 1 0.0 -1,166 -99.9 - -

Deaths Egypt 2,278 1 0.0 -2,277 -100.0 - -

Deaths Pakistan 3,695 1 0.0 -3,694 -100.0 - -

Deaths Mexico 22,584 1 0.0 -22,583 -100.0 - -

Deaths US_Georgia_Fulton 304 1 0.0 -303 -99.7 - -

Deaths Colombia 2,426 1 0.0 -2,425 -100.0 - -

Deaths Chile 4,502 1 0.0 -4,501 -100.0 - -

Deaths North_Macedonia 247 1 0.0 -246 -99.6 - -

Deaths Saudi_Arabia 1,307 1 0.0 -1,306 -99.9 - -

Deaths Honduras 395 1 0.0 -394 -99.7 - -

Deaths US_California_Orange 269 1 0.0 -268 -99.6 - -

Deaths South_Africa 1,991 1 0.0 -1,990 -99.9 - -

Deaths Afghanistan 598 1 0.0 -597 -99.8 - -

Deaths Belarus 351 1 0.0 -350 -99.7 - -

Deaths Bolivia 820 1 0.0 -819 -99.9 - -

Deaths US_Washington_Yakima 138 1 0.0 -137 -99.3 - -

Deaths Azerbaijan 161 1 0.0 -160 -99.4 - -

Deaths Kazakhstan 127 1 0.0 -126 -99.2 - -

Deaths US_Minnesota_Ramsey 211 1 0.0 -210 -99.5 - -

Deaths Guatemala 547 1 0.0 -546 -99.8 - -

Deaths Oman 137 1 0.0 -136 -99.3 - -

Deaths Qatar 99 1 0.0 -98 -99.0 - -

Deaths Haiti 88 1 0.0 -87 -98.9 - -

Deaths Senegal 86 1 0.0 -85 -98.8 - -
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